原生脂膜上的酶聚合有机导体

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Diana Priyadarshini, Tobias Abrahamsson, Hanne Biesmans, Xenofon Strakosas, Jennifer Y. Gerasimov, Magnus Berggren, Daniel T. Simon, Chiara Musumeci
{"title":"原生脂膜上的酶聚合有机导体","authors":"Diana Priyadarshini, Tobias Abrahamsson, Hanne Biesmans, Xenofon Strakosas, Jennifer Y. Gerasimov, Magnus Berggren, Daniel T. Simon, Chiara Musumeci","doi":"10.1021/acs.langmuir.4c03373","DOIUrl":null,"url":null,"abstract":"The dual capability of conductive polymers to conduct ions and electrons, in combination with their flexible mechanical properties, makes them ideal for bioelectronic applications. This study explores the <i>in situ</i> enzymatic polymerization of water-soluble π-conjugated monomers on native lipid bilayers derived from the F11 cell line, mimicking mammalian neural membranes. Enzymatic polymerization was catalyzed using horseradish peroxidase (HRP) in the presence of oxidant hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and monitored via electrochemical quartz crystal microbalance with dissipation (EQCM-D) and electrochemical impedance spectroscopy (EIS). Results showed polymerization with HRP. The structural properties of the formed polymer films were characterized <i>ex situ</i> using atomic force microscopy (AFM), while the quality of the F11 native lipid vesicles and bilayer was respectively assessed through dynamic light scattering (DLS) and fluorescence recovery after photobleaching (FRAP) techniques. This work demonstrates, for the first time, the feasibility of the <i>in situ</i> formation of conductive polymers on native lipid membranes, offering a promising approach for the development of minimally invasive neural electrodes to diagnose and treat neurological disorders.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzymatically Polymerized Organic Conductors on Native Lipid Membranes\",\"authors\":\"Diana Priyadarshini, Tobias Abrahamsson, Hanne Biesmans, Xenofon Strakosas, Jennifer Y. Gerasimov, Magnus Berggren, Daniel T. Simon, Chiara Musumeci\",\"doi\":\"10.1021/acs.langmuir.4c03373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dual capability of conductive polymers to conduct ions and electrons, in combination with their flexible mechanical properties, makes them ideal for bioelectronic applications. This study explores the <i>in situ</i> enzymatic polymerization of water-soluble π-conjugated monomers on native lipid bilayers derived from the F11 cell line, mimicking mammalian neural membranes. Enzymatic polymerization was catalyzed using horseradish peroxidase (HRP) in the presence of oxidant hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and monitored via electrochemical quartz crystal microbalance with dissipation (EQCM-D) and electrochemical impedance spectroscopy (EIS). Results showed polymerization with HRP. The structural properties of the formed polymer films were characterized <i>ex situ</i> using atomic force microscopy (AFM), while the quality of the F11 native lipid vesicles and bilayer was respectively assessed through dynamic light scattering (DLS) and fluorescence recovery after photobleaching (FRAP) techniques. This work demonstrates, for the first time, the feasibility of the <i>in situ</i> formation of conductive polymers on native lipid membranes, offering a promising approach for the development of minimally invasive neural electrodes to diagnose and treat neurological disorders.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03373\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03373","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

导电聚合物具有传导离子和电子的双重能力,再加上其灵活的机械特性,使其成为生物电子应用的理想选择。本研究探讨了水溶性π-共轭单体在模拟哺乳动物神经膜的 F11 细胞系原生脂质双分子层上的原位酶聚合。在氧化剂过氧化氢(H2O2)存在下,使用辣根过氧化物酶(HRP)催化酶聚合,并通过带耗散的电化学石英晶体微天平(EQCM-D)和电化学阻抗光谱(EIS)进行监测。结果显示了与 HRP 的聚合作用。使用原子力显微镜(AFM)对所形成的聚合物薄膜的结构特性进行了原位表征,同时分别通过动态光散射(DLS)和光漂白后荧光恢复(FRAP)技术对 F11 原生脂质囊泡和双分子层的质量进行了评估。这项工作首次证明了在原生脂膜上原位形成导电聚合物的可行性,为开发微创神经电极诊断和治疗神经系统疾病提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enzymatically Polymerized Organic Conductors on Native Lipid Membranes

Enzymatically Polymerized Organic Conductors on Native Lipid Membranes
The dual capability of conductive polymers to conduct ions and electrons, in combination with their flexible mechanical properties, makes them ideal for bioelectronic applications. This study explores the in situ enzymatic polymerization of water-soluble π-conjugated monomers on native lipid bilayers derived from the F11 cell line, mimicking mammalian neural membranes. Enzymatic polymerization was catalyzed using horseradish peroxidase (HRP) in the presence of oxidant hydrogen peroxide (H2O2) and monitored via electrochemical quartz crystal microbalance with dissipation (EQCM-D) and electrochemical impedance spectroscopy (EIS). Results showed polymerization with HRP. The structural properties of the formed polymer films were characterized ex situ using atomic force microscopy (AFM), while the quality of the F11 native lipid vesicles and bilayer was respectively assessed through dynamic light scattering (DLS) and fluorescence recovery after photobleaching (FRAP) techniques. This work demonstrates, for the first time, the feasibility of the in situ formation of conductive polymers on native lipid membranes, offering a promising approach for the development of minimally invasive neural electrodes to diagnose and treat neurological disorders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信