层状过渡金属钙铈化合物中的阴离子掺杂,实现稳健的锂硫电池

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chen Huang, Jing Yu, Chao Yue Zhang, Zhibiao Cui, Ren He, Linlin Yang, Bingfei Nan, Canhuang Li, Xuede Qi, Xueqiang Qi, Junshan Li, Jin Yuan Zhou, Oleg Usoltsev, Laura Simonelli, Jordi Arbiol, Yao-Jie Lei, Qing Sun, Guoxiu Wang, Andreu Cabot
{"title":"层状过渡金属钙铈化合物中的阴离子掺杂,实现稳健的锂硫电池","authors":"Chen Huang, Jing Yu, Chao Yue Zhang, Zhibiao Cui, Ren He, Linlin Yang, Bingfei Nan, Canhuang Li, Xuede Qi, Xueqiang Qi, Junshan Li, Jin Yuan Zhou, Oleg Usoltsev, Laura Simonelli, Jordi Arbiol, Yao-Jie Lei, Qing Sun, Guoxiu Wang, Andreu Cabot","doi":"10.1002/anie.202420488","DOIUrl":null,"url":null,"abstract":"Lithium‐sulfur batteries (LSBs) are among the most promising next‐generation energy storage technologies. However, a slow Li‐S reaction kinetics at the LSB cathode limit their energy and power densities. To address these challenges, this study introduces an anionic‐doped transition metal chalcogenide as an effective catalyst to accelerate the Li‐S reaction. Specifically, a tellurium‐doped, carbon‐supported bismuth selenide with Se vacancies (Te‐Bi2Se3‐x@C) is prepared and tested as a sulfur host in LSB cathodes. X‐ray absorption and in‐situ X‐ray diffraction analyses reveal that Te doping induces lattice distortions and modulates the local coordination environment and electronic structure of Bi atoms to promote the catalytic activity toward the conversion of polysulfides. Additionally, the generated Se vacancies alter the electronic structure around atomic defect sites, increase the carrier concentration, and activate unpaired cations to effectively trap polysulfides. As a result, LSBs based on Te‐Bi2Se3‐x@C/S cathodes demonstrate outstanding specific capacities of 1508 mAh·g‐1 at 0.1C, excellent rate performance with 655 mAh·g‐1 at 5C, and near‐integral cycle stability over 1000 cycles. Furthermore, under high sulfur loading of 6.4 mg·cm‐2, a cathode capacity exceeding 8 mAh·cm‐2 is sustained at 0.1C current rate, with 6.4 mAh·cm‐2 retained after 300 cycles under lean electrolyte conditions (6.8 μL·mg‐1).","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"30 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anionic Doping in Layered Transition Metal Chalcogenides for Robust Lithium‐Sulfur Batteries\",\"authors\":\"Chen Huang, Jing Yu, Chao Yue Zhang, Zhibiao Cui, Ren He, Linlin Yang, Bingfei Nan, Canhuang Li, Xuede Qi, Xueqiang Qi, Junshan Li, Jin Yuan Zhou, Oleg Usoltsev, Laura Simonelli, Jordi Arbiol, Yao-Jie Lei, Qing Sun, Guoxiu Wang, Andreu Cabot\",\"doi\":\"10.1002/anie.202420488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium‐sulfur batteries (LSBs) are among the most promising next‐generation energy storage technologies. However, a slow Li‐S reaction kinetics at the LSB cathode limit their energy and power densities. To address these challenges, this study introduces an anionic‐doped transition metal chalcogenide as an effective catalyst to accelerate the Li‐S reaction. Specifically, a tellurium‐doped, carbon‐supported bismuth selenide with Se vacancies (Te‐Bi2Se3‐x@C) is prepared and tested as a sulfur host in LSB cathodes. X‐ray absorption and in‐situ X‐ray diffraction analyses reveal that Te doping induces lattice distortions and modulates the local coordination environment and electronic structure of Bi atoms to promote the catalytic activity toward the conversion of polysulfides. Additionally, the generated Se vacancies alter the electronic structure around atomic defect sites, increase the carrier concentration, and activate unpaired cations to effectively trap polysulfides. As a result, LSBs based on Te‐Bi2Se3‐x@C/S cathodes demonstrate outstanding specific capacities of 1508 mAh·g‐1 at 0.1C, excellent rate performance with 655 mAh·g‐1 at 5C, and near‐integral cycle stability over 1000 cycles. Furthermore, under high sulfur loading of 6.4 mg·cm‐2, a cathode capacity exceeding 8 mAh·cm‐2 is sustained at 0.1C current rate, with 6.4 mAh·cm‐2 retained after 300 cycles under lean electrolyte conditions (6.8 μL·mg‐1).\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202420488\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420488","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂硫电池(LSB)是最有前途的下一代储能技术之一。然而,LSB 阴极缓慢的锂硫反应动力学限制了其能量和功率密度。为了应对这些挑战,本研究引入了掺杂阴离子的过渡金属瑀作为有效催化剂,以加速锂-S 反应。具体来说,本研究制备了一种掺碲的碳支撑硒化铋(Te-Bi2Se3-x@C),并将其作为 LSB 阴极的硫宿主进行了测试。X 射线吸收和原位 X 射线衍射分析表明,Te 掺杂会引起晶格畸变,并改变铋原子的局部配位环境和电子结构,从而促进多硫化物转化的催化活性。此外,生成的 Se 空位改变了原子缺陷点周围的电子结构,增加了载流子浓度,并激活了非配对阳离子,从而有效地捕获多硫化物。因此,基于 Te-Bi2Se3-x@C/S 阴极的 LSB 在 0.1C 时的比容量达到了 1508 mAh-g-1,在 5C 时的速率性能达到了 655 mAh-g-1,并且在 1000 个循环周期内具有接近完整循环的稳定性。此外,在 6.4 mg-cm-2 的高硫负荷下,0.1℃ 电流速率下的阴极容量超过 8 mAh-cm-2,在贫电解质条件(6.8 μL-mg-1)下循环 300 次后仍能保持 6.4 mAh-cm-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anionic Doping in Layered Transition Metal Chalcogenides for Robust Lithium‐Sulfur Batteries
Lithium‐sulfur batteries (LSBs) are among the most promising next‐generation energy storage technologies. However, a slow Li‐S reaction kinetics at the LSB cathode limit their energy and power densities. To address these challenges, this study introduces an anionic‐doped transition metal chalcogenide as an effective catalyst to accelerate the Li‐S reaction. Specifically, a tellurium‐doped, carbon‐supported bismuth selenide with Se vacancies (Te‐Bi2Se3‐x@C) is prepared and tested as a sulfur host in LSB cathodes. X‐ray absorption and in‐situ X‐ray diffraction analyses reveal that Te doping induces lattice distortions and modulates the local coordination environment and electronic structure of Bi atoms to promote the catalytic activity toward the conversion of polysulfides. Additionally, the generated Se vacancies alter the electronic structure around atomic defect sites, increase the carrier concentration, and activate unpaired cations to effectively trap polysulfides. As a result, LSBs based on Te‐Bi2Se3‐x@C/S cathodes demonstrate outstanding specific capacities of 1508 mAh·g‐1 at 0.1C, excellent rate performance with 655 mAh·g‐1 at 5C, and near‐integral cycle stability over 1000 cycles. Furthermore, under high sulfur loading of 6.4 mg·cm‐2, a cathode capacity exceeding 8 mAh·cm‐2 is sustained at 0.1C current rate, with 6.4 mAh·cm‐2 retained after 300 cycles under lean electrolyte conditions (6.8 μL·mg‐1).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信