Junyi Zeng, Xinbo Huang, Yajie Yang, Jieyi Wang, Yuanchao Shi, Hui Li, Ning Hu, Bo Yu, Jing Mu
{"title":"用于时空控制 CRISPR-Cas9 基因编辑和协同光动力疗法的近红外光遗传纳米系统","authors":"Junyi Zeng, Xinbo Huang, Yajie Yang, Jieyi Wang, Yuanchao Shi, Hui Li, Ning Hu, Bo Yu, Jing Mu","doi":"10.1021/acsami.4c18656","DOIUrl":null,"url":null,"abstract":"Controlling CRISPR/Cas9 gene editing at the spatiotemporal resolution level, especially for in vivo applications, remains a great challenge. Here, we developed a near-infrared (NIR) light-activated nanophotonic system (UCPP) for controlled CRISPR-Cas9 gene editing and synergistic photodynamic therapy (PDT). Lanthanide-doped upconversion nanoparticles are not only employed as carriers for intracellular plasmid delivery but also serve as the nanotransducers to convert NIR light (980 nm) into visible light with emission at 460 and 650 nm, which could result in simultaneous activation of gene editing and PDT processes, respectively. Such unique design not only achieves light-controlled precise gene editing of hypoxia-inducible factor 1α with minimal off-target effect, which effectively ameliorates the hypoxic state at tumor sites, but also facilitates the deep-seated PDT process with synergistic antitumor effect. This optogenetically activatable CRISPR-Cas9 nanosystem holds great potential for spatially controlled in vivo gene editing and targeted cancer therapy.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"47 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-Infrared Optogenetic Nanosystem for Spatiotemporal Control of CRISPR-Cas9 Gene Editing and Synergistic Photodynamic Therapy\",\"authors\":\"Junyi Zeng, Xinbo Huang, Yajie Yang, Jieyi Wang, Yuanchao Shi, Hui Li, Ning Hu, Bo Yu, Jing Mu\",\"doi\":\"10.1021/acsami.4c18656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling CRISPR/Cas9 gene editing at the spatiotemporal resolution level, especially for in vivo applications, remains a great challenge. Here, we developed a near-infrared (NIR) light-activated nanophotonic system (UCPP) for controlled CRISPR-Cas9 gene editing and synergistic photodynamic therapy (PDT). Lanthanide-doped upconversion nanoparticles are not only employed as carriers for intracellular plasmid delivery but also serve as the nanotransducers to convert NIR light (980 nm) into visible light with emission at 460 and 650 nm, which could result in simultaneous activation of gene editing and PDT processes, respectively. Such unique design not only achieves light-controlled precise gene editing of hypoxia-inducible factor 1α with minimal off-target effect, which effectively ameliorates the hypoxic state at tumor sites, but also facilitates the deep-seated PDT process with synergistic antitumor effect. This optogenetically activatable CRISPR-Cas9 nanosystem holds great potential for spatially controlled in vivo gene editing and targeted cancer therapy.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c18656\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c18656","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Near-Infrared Optogenetic Nanosystem for Spatiotemporal Control of CRISPR-Cas9 Gene Editing and Synergistic Photodynamic Therapy
Controlling CRISPR/Cas9 gene editing at the spatiotemporal resolution level, especially for in vivo applications, remains a great challenge. Here, we developed a near-infrared (NIR) light-activated nanophotonic system (UCPP) for controlled CRISPR-Cas9 gene editing and synergistic photodynamic therapy (PDT). Lanthanide-doped upconversion nanoparticles are not only employed as carriers for intracellular plasmid delivery but also serve as the nanotransducers to convert NIR light (980 nm) into visible light with emission at 460 and 650 nm, which could result in simultaneous activation of gene editing and PDT processes, respectively. Such unique design not only achieves light-controlled precise gene editing of hypoxia-inducible factor 1α with minimal off-target effect, which effectively ameliorates the hypoxic state at tumor sites, but also facilitates the deep-seated PDT process with synergistic antitumor effect. This optogenetically activatable CRISPR-Cas9 nanosystem holds great potential for spatially controlled in vivo gene editing and targeted cancer therapy.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.