Trinh Van Chien;Nguyen Minh Quan;Tri Nhu Do;Cuong Le;Tan N. Nguyen;Symeon Chatzinotas
{"title":"超密集低轨道网络的快速波束布局","authors":"Trinh Van Chien;Nguyen Minh Quan;Tri Nhu Do;Cuong Le;Tan N. Nguyen;Symeon Chatzinotas","doi":"10.1109/LWC.2024.3516818","DOIUrl":null,"url":null,"abstract":"Low Earth orbit (LEO) satellites has brought about significant improvements in wireless communications, characterized by low latency and reduced transmission loss compared to geostationary orbit (GSO) satellites. Ultra-dense LEO satellites can serve many users by generating active beams effective to their locations. The beam placement problem is challenging but important for efficiently allocating resources with a large number of users. This letter formulates and solves a fast beam placement optimization problem for ultra-dense satellite systems to enhance the link budget with a minimum number of active beams (NABs). To achieve this goal and balance load among beams within polynomial time, we propose two algorithms for large user groups exploiting the modified K-means clustering and the graph theory. Numerical results illustrate the effectiveness of the proposals in terms of the statistical channel gain-to-noise ratio and computation time over state-of-the-art benchmarks.","PeriodicalId":13343,"journal":{"name":"IEEE Wireless Communications Letters","volume":"14 3","pages":"621-625"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Beam Placement for Ultra-Dense LEO Networks\",\"authors\":\"Trinh Van Chien;Nguyen Minh Quan;Tri Nhu Do;Cuong Le;Tan N. Nguyen;Symeon Chatzinotas\",\"doi\":\"10.1109/LWC.2024.3516818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low Earth orbit (LEO) satellites has brought about significant improvements in wireless communications, characterized by low latency and reduced transmission loss compared to geostationary orbit (GSO) satellites. Ultra-dense LEO satellites can serve many users by generating active beams effective to their locations. The beam placement problem is challenging but important for efficiently allocating resources with a large number of users. This letter formulates and solves a fast beam placement optimization problem for ultra-dense satellite systems to enhance the link budget with a minimum number of active beams (NABs). To achieve this goal and balance load among beams within polynomial time, we propose two algorithms for large user groups exploiting the modified K-means clustering and the graph theory. Numerical results illustrate the effectiveness of the proposals in terms of the statistical channel gain-to-noise ratio and computation time over state-of-the-art benchmarks.\",\"PeriodicalId\":13343,\"journal\":{\"name\":\"IEEE Wireless Communications Letters\",\"volume\":\"14 3\",\"pages\":\"621-625\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Wireless Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10798457/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10798457/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Low Earth orbit (LEO) satellites has brought about significant improvements in wireless communications, characterized by low latency and reduced transmission loss compared to geostationary orbit (GSO) satellites. Ultra-dense LEO satellites can serve many users by generating active beams effective to their locations. The beam placement problem is challenging but important for efficiently allocating resources with a large number of users. This letter formulates and solves a fast beam placement optimization problem for ultra-dense satellite systems to enhance the link budget with a minimum number of active beams (NABs). To achieve this goal and balance load among beams within polynomial time, we propose two algorithms for large user groups exploiting the modified K-means clustering and the graph theory. Numerical results illustrate the effectiveness of the proposals in terms of the statistical channel gain-to-noise ratio and computation time over state-of-the-art benchmarks.
期刊介绍:
IEEE Wireless Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of wireless communications. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of wireless communication systems.