Yi Wu, Zongwei Wang, Ziyu Xue, Yuhang Yan, Bushra Huma, Yuqian Zhou, Zhongxin Tan
{"title":"Fertilization of potentially toxic element-contaminated soils remediated with reusable biochar pellets using rice straw, pig manure and their derived biochar","authors":"Yi Wu, Zongwei Wang, Ziyu Xue, Yuhang Yan, Bushra Huma, Yuqian Zhou, Zhongxin Tan","doi":"10.1016/j.envpol.2024.125551","DOIUrl":null,"url":null,"abstract":"Potentially toxic elements (PTEs) are widespread pollutants in agricultural fields, presenting significant challenges to the maintenance of soil ecological functions while simultaneously reducing their concentrations. This study detailed the development of a high-strength reusable silicate magnetic composite biochar sphere (SMBCS) characterized by superior magnetic and adsorption properties, synthesized from natural minerals and biochar. The application of SMBCS over three consecutive remediation cycles led to reductions in cadmium (Cd), lead (Pb), and arsenic (As) concentrations in soil by 28.6%, 26.6%, and 42.9%, respectively, accompanied by corresponding decreases in bioavailability of 52.7%, 49.4%, and 39.4%. The accumulation of Cd, Pb, and As in rice seedlings cultivated in the remediated soil decreased by 79.50-85.47%, 38.05-38.99%, and 39.56-77.10%, respectively. However, the removal of essential mineral nutrients (Al, Fe, K, Ca, Mg, Si, N, Zn, Mn, and Cu) from the soil ranged from 3.26% to 36.28%, which adversely affected seed germination and rice seedling growth. Pre-planting fertilization with rice straw (RS), pig manure (PM), biochar (RSB and PMB), and regenerated SMBCS (RSMBCS1 and RSMBCS2) effectively reduced Cd (0.20-45.40%) and Pb (8.70-35.36%) uptake while enhancing the bioavailability of mineral nutrients, thereby promoting crop growth and physiological traits. The SMBCS-fertilization technique emerges as a viable approach for the removal of PTEs in agricultural soils, facilitating the restoration of ecological functions and ensuring safe agricultural production.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"17 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.125551","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Fertilization of potentially toxic element-contaminated soils remediated with reusable biochar pellets using rice straw, pig manure and their derived biochar
Potentially toxic elements (PTEs) are widespread pollutants in agricultural fields, presenting significant challenges to the maintenance of soil ecological functions while simultaneously reducing their concentrations. This study detailed the development of a high-strength reusable silicate magnetic composite biochar sphere (SMBCS) characterized by superior magnetic and adsorption properties, synthesized from natural minerals and biochar. The application of SMBCS over three consecutive remediation cycles led to reductions in cadmium (Cd), lead (Pb), and arsenic (As) concentrations in soil by 28.6%, 26.6%, and 42.9%, respectively, accompanied by corresponding decreases in bioavailability of 52.7%, 49.4%, and 39.4%. The accumulation of Cd, Pb, and As in rice seedlings cultivated in the remediated soil decreased by 79.50-85.47%, 38.05-38.99%, and 39.56-77.10%, respectively. However, the removal of essential mineral nutrients (Al, Fe, K, Ca, Mg, Si, N, Zn, Mn, and Cu) from the soil ranged from 3.26% to 36.28%, which adversely affected seed germination and rice seedling growth. Pre-planting fertilization with rice straw (RS), pig manure (PM), biochar (RSB and PMB), and regenerated SMBCS (RSMBCS1 and RSMBCS2) effectively reduced Cd (0.20-45.40%) and Pb (8.70-35.36%) uptake while enhancing the bioavailability of mineral nutrients, thereby promoting crop growth and physiological traits. The SMBCS-fertilization technique emerges as a viable approach for the removal of PTEs in agricultural soils, facilitating the restoration of ecological functions and ensuring safe agricultural production.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.