Meiyan Bai , Jianzhuang Xiao , Tao Ding , Kequan Yu
{"title":"3D 打印工程水泥基复合材料 (ECC) 与后浇混凝土之间的界面粘结特性","authors":"Meiyan Bai , Jianzhuang Xiao , Tao Ding , Kequan Yu","doi":"10.1016/j.cemconcomp.2024.105897","DOIUrl":null,"url":null,"abstract":"<div><div>Buildings can be rapidly constructed using 3D printed concrete technology without formwork, garnering increasing attention within the construction industry. The effects of different printing parameters on the splitting tensile strength, shear strength, pore structure, and micromorphology of the interface between 3D printed ECC and post-cast concrete were investigated, including single-layer printing height, fiber content, and recycled sand replacement ratio. The results indicated that as the fiber content and single-layer printing height increased, the interfacial bond strength was initially enhanced while subsequently decreased, with optimal bond strength achieved at a 15 mm single-layer printing height. Moderate fiber content and single-layer printing height were beneficial for interfacial bond strength. Meanwhile, the interfacial bond strength was reduced due to the evolution of interfacial pore structure after the incorporation of recycled sand. The splitting tensile strength and shear strength of the interface between 3D printed ECC and post-cast concrete decreased by 36.1 % and 35.8 %, respectively, when the replacement ratio of recycled sand in ECC was 100 %. Additionally, models for the interfacial shear strength between 3D printed ECC and post-cast concrete were proposed.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"157 ","pages":"Article 105897"},"PeriodicalIF":10.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial bond properties between 3D printed engineered cementitious composite (ECC) and post-cast concrete\",\"authors\":\"Meiyan Bai , Jianzhuang Xiao , Tao Ding , Kequan Yu\",\"doi\":\"10.1016/j.cemconcomp.2024.105897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Buildings can be rapidly constructed using 3D printed concrete technology without formwork, garnering increasing attention within the construction industry. The effects of different printing parameters on the splitting tensile strength, shear strength, pore structure, and micromorphology of the interface between 3D printed ECC and post-cast concrete were investigated, including single-layer printing height, fiber content, and recycled sand replacement ratio. The results indicated that as the fiber content and single-layer printing height increased, the interfacial bond strength was initially enhanced while subsequently decreased, with optimal bond strength achieved at a 15 mm single-layer printing height. Moderate fiber content and single-layer printing height were beneficial for interfacial bond strength. Meanwhile, the interfacial bond strength was reduced due to the evolution of interfacial pore structure after the incorporation of recycled sand. The splitting tensile strength and shear strength of the interface between 3D printed ECC and post-cast concrete decreased by 36.1 % and 35.8 %, respectively, when the replacement ratio of recycled sand in ECC was 100 %. Additionally, models for the interfacial shear strength between 3D printed ECC and post-cast concrete were proposed.</div></div>\",\"PeriodicalId\":9865,\"journal\":{\"name\":\"Cement & concrete composites\",\"volume\":\"157 \",\"pages\":\"Article 105897\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement & concrete composites\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958946524004700\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524004700","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Interfacial bond properties between 3D printed engineered cementitious composite (ECC) and post-cast concrete
Buildings can be rapidly constructed using 3D printed concrete technology without formwork, garnering increasing attention within the construction industry. The effects of different printing parameters on the splitting tensile strength, shear strength, pore structure, and micromorphology of the interface between 3D printed ECC and post-cast concrete were investigated, including single-layer printing height, fiber content, and recycled sand replacement ratio. The results indicated that as the fiber content and single-layer printing height increased, the interfacial bond strength was initially enhanced while subsequently decreased, with optimal bond strength achieved at a 15 mm single-layer printing height. Moderate fiber content and single-layer printing height were beneficial for interfacial bond strength. Meanwhile, the interfacial bond strength was reduced due to the evolution of interfacial pore structure after the incorporation of recycled sand. The splitting tensile strength and shear strength of the interface between 3D printed ECC and post-cast concrete decreased by 36.1 % and 35.8 %, respectively, when the replacement ratio of recycled sand in ECC was 100 %. Additionally, models for the interfacial shear strength between 3D printed ECC and post-cast concrete were proposed.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.