缩小氧化锰前驱体合成与高压锂离子电池用氧化锰锂阴极之间的差距

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Mariam Baazizi, Mehdi Karbak, Mohamed Aqil, Simon Sayah, Mouad Dahbi and Fouad Ghamouss
{"title":"缩小氧化锰前驱体合成与高压锂离子电池用氧化锰锂阴极之间的差距","authors":"Mariam Baazizi, Mehdi Karbak, Mohamed Aqil, Simon Sayah, Mouad Dahbi and Fouad Ghamouss","doi":"10.1039/D4TA06485B","DOIUrl":null,"url":null,"abstract":"<p >The synthesis route of a cathode material is pivotal in developing and optimizing materials for high-performance lithium-ion batteries (LIBs). The choice of the starting precursor, for example, critically influences the phase purity, particle size, and electrochemical performance of the final cathode. In this work, we established a direct link between MnO<small><sub>2</sub></small> precursor properties and the performance of LiMn<small><sub>2</sub></small>O<small><sub>4</sub></small> cathodes (LMO) synthesized <em>via</em> a simple one-step solid-state method. By employing permanganate reduction, we synthesized MnO<small><sub>2</sub></small> with controlled nanoparticle growth kinetics and crystallization pathways. These tailored MnO<small><sub>2</sub></small> precursors were thoroughly characterized and tested as manganese precursors for LMO synthesis. Interestingly, the precursor's structural properties and oxidation states directly impacted the solid-state reaction and spinel structure formation. <em>Operando</em> Accelerating Rate Calorimetry (ARC) and <em>operando</em> XRD also highlighted the thermal and structural stability with the cycling performance of these LMO cathodes. Our findings provide valuable insights for optimizing LMO synthesis to enhance stability and performance in next-generation eco-friendly energy storage technologies.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 6","pages":" 4225-4236"},"PeriodicalIF":9.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging the gap between manganese oxide precursor synthesis and lithium manganese oxide cathodes for high-voltage lithium-ion batteries†\",\"authors\":\"Mariam Baazizi, Mehdi Karbak, Mohamed Aqil, Simon Sayah, Mouad Dahbi and Fouad Ghamouss\",\"doi\":\"10.1039/D4TA06485B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The synthesis route of a cathode material is pivotal in developing and optimizing materials for high-performance lithium-ion batteries (LIBs). The choice of the starting precursor, for example, critically influences the phase purity, particle size, and electrochemical performance of the final cathode. In this work, we established a direct link between MnO<small><sub>2</sub></small> precursor properties and the performance of LiMn<small><sub>2</sub></small>O<small><sub>4</sub></small> cathodes (LMO) synthesized <em>via</em> a simple one-step solid-state method. By employing permanganate reduction, we synthesized MnO<small><sub>2</sub></small> with controlled nanoparticle growth kinetics and crystallization pathways. These tailored MnO<small><sub>2</sub></small> precursors were thoroughly characterized and tested as manganese precursors for LMO synthesis. Interestingly, the precursor's structural properties and oxidation states directly impacted the solid-state reaction and spinel structure formation. <em>Operando</em> Accelerating Rate Calorimetry (ARC) and <em>operando</em> XRD also highlighted the thermal and structural stability with the cycling performance of these LMO cathodes. Our findings provide valuable insights for optimizing LMO synthesis to enhance stability and performance in next-generation eco-friendly energy storage technologies.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 6\",\"pages\":\" 4225-4236\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta06485b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta06485b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在开发和优化高性能锂离子电池(LIB)材料的过程中,阴极材料的合成路线至关重要。例如,起始前驱体的选择会严重影响最终阴极的相纯度、粒度和电化学性能。在这项研究中,我们建立了 MnO2 前驱体特性与通过简单的一步固态法合成的锰酸锂阴极(LMO)性能之间的直接联系。通过使用高锰酸盐还原法,我们合成了具有可控纳米粒子生长动力学和结晶途径的二氧化锰。我们对这些定制的 MnO2 前驱体进行了全面的表征和测试,并将其作为合成 LMO 的锰前驱体。有趣的是,前驱体的结构特性和氧化态直接影响固态反应和尖晶石结构的形成。操作过程中的加速速率量热法(ARC)和操作过程中的 XRD 也突显了这些 LMO 阴极的热稳定性和结构稳定性以及循环性能。我们的研究结果为优化 LMO 合成以提高下一代环保型储能技术的稳定性和性能提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bridging the gap between manganese oxide precursor synthesis and lithium manganese oxide cathodes for high-voltage lithium-ion batteries†

Bridging the gap between manganese oxide precursor synthesis and lithium manganese oxide cathodes for high-voltage lithium-ion batteries†

The synthesis route of a cathode material is pivotal in developing and optimizing materials for high-performance lithium-ion batteries (LIBs). The choice of the starting precursor, for example, critically influences the phase purity, particle size, and electrochemical performance of the final cathode. In this work, we established a direct link between MnO2 precursor properties and the performance of LiMn2O4 cathodes (LMO) synthesized via a simple one-step solid-state method. By employing permanganate reduction, we synthesized MnO2 with controlled nanoparticle growth kinetics and crystallization pathways. These tailored MnO2 precursors were thoroughly characterized and tested as manganese precursors for LMO synthesis. Interestingly, the precursor's structural properties and oxidation states directly impacted the solid-state reaction and spinel structure formation. Operando Accelerating Rate Calorimetry (ARC) and operando XRD also highlighted the thermal and structural stability with the cycling performance of these LMO cathodes. Our findings provide valuable insights for optimizing LMO synthesis to enhance stability and performance in next-generation eco-friendly energy storage technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信