Yusuf Karli, René Schwarz, Florian Kappe, Daniel A. Vajner, Ria G. Krämer, Thomas K. Bracht, Saimon F. Covre da Silva, Daniel Richter, Stefan Nolte, Armando Rastelli, Doris E. Reiter, Gregor Weihs, Tobias Heindel, Vikas Remesh
{"title":"通过受激绝热快速通过实现量子信息的稳健单光子生成","authors":"Yusuf Karli, René Schwarz, Florian Kappe, Daniel A. Vajner, Ria G. Krämer, Thomas K. Bracht, Saimon F. Covre da Silva, Daniel Richter, Stefan Nolte, Armando Rastelli, Doris E. Reiter, Gregor Weihs, Tobias Heindel, Vikas Remesh","doi":"10.1063/5.0241504","DOIUrl":null,"url":null,"abstract":"The generation of single photons using solid-state quantum emitters is pivotal for advancing photonic quantum technologies, particularly in quantum communication. As the field continuously advances toward practical use cases and beyond shielded laboratory environments, specific demands are placed on the robustness of quantum light sources during operation. In this context, the robustness of the quantum light generation process against intrinsic and extrinsic effects is a major challenge. Here, we present a robust scheme for the coherent generation of indistinguishable single-photon states with very low photon number coherence using a three-level system in a semiconductor quantum dot. Our approach combines the advantages of adiabatic rapid passage and stimulated two-photon excitation. We demonstrate robust quantum light generation while maintaining the prime quantum-optical quality of the emitted light state. Moreover, we highlight the immediate advantages of the implementation of various quantum cryptographic protocols.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"30 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust single-photon generation for quantum information enabled by stimulated adiabatic rapid passage\",\"authors\":\"Yusuf Karli, René Schwarz, Florian Kappe, Daniel A. Vajner, Ria G. Krämer, Thomas K. Bracht, Saimon F. Covre da Silva, Daniel Richter, Stefan Nolte, Armando Rastelli, Doris E. Reiter, Gregor Weihs, Tobias Heindel, Vikas Remesh\",\"doi\":\"10.1063/5.0241504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generation of single photons using solid-state quantum emitters is pivotal for advancing photonic quantum technologies, particularly in quantum communication. As the field continuously advances toward practical use cases and beyond shielded laboratory environments, specific demands are placed on the robustness of quantum light sources during operation. In this context, the robustness of the quantum light generation process against intrinsic and extrinsic effects is a major challenge. Here, we present a robust scheme for the coherent generation of indistinguishable single-photon states with very low photon number coherence using a three-level system in a semiconductor quantum dot. Our approach combines the advantages of adiabatic rapid passage and stimulated two-photon excitation. We demonstrate robust quantum light generation while maintaining the prime quantum-optical quality of the emitted light state. Moreover, we highlight the immediate advantages of the implementation of various quantum cryptographic protocols.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0241504\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0241504","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Robust single-photon generation for quantum information enabled by stimulated adiabatic rapid passage
The generation of single photons using solid-state quantum emitters is pivotal for advancing photonic quantum technologies, particularly in quantum communication. As the field continuously advances toward practical use cases and beyond shielded laboratory environments, specific demands are placed on the robustness of quantum light sources during operation. In this context, the robustness of the quantum light generation process against intrinsic and extrinsic effects is a major challenge. Here, we present a robust scheme for the coherent generation of indistinguishable single-photon states with very low photon number coherence using a three-level system in a semiconductor quantum dot. Our approach combines the advantages of adiabatic rapid passage and stimulated two-photon excitation. We demonstrate robust quantum light generation while maintaining the prime quantum-optical quality of the emitted light state. Moreover, we highlight the immediate advantages of the implementation of various quantum cryptographic protocols.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.