碳掺入对通过反应-HiPIMS 沉积的 TiAlCN 涂层的微观结构、形态、硬度、杨氏模量和耐腐蚀性的影响

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Mohamed Lahouij, Nassima Jaghar, Matej Drobnič, Youssef Samih, Aljaž Drnovšek, Janez Kovač, Miha Čekada, Mohammed Makha, Jones Alami
{"title":"碳掺入对通过反应-HiPIMS 沉积的 TiAlCN 涂层的微观结构、形态、硬度、杨氏模量和耐腐蚀性的影响","authors":"Mohamed Lahouij, Nassima Jaghar, Matej Drobnič, Youssef Samih, Aljaž Drnovšek, Janez Kovač, Miha Čekada, Mohammed Makha, Jones Alami","doi":"10.1016/j.apsusc.2024.162115","DOIUrl":null,"url":null,"abstract":"TiAlCN coatings, designed as advanced alternatives to TiAlN for enhanced tribological performance, were deposited via reactive high-power impulse magnetron sputtering (HiPIMS) with acetylene flow rates varying between 0 and 10 sccm. The carbon content, ranging from 1 at.% to 58 at.%, significantly influenced the microstructure, hardness and Young modulus properties of the coatings. At lower carbon concentrations (up to 17 at.%), carbon atoms substituted nitrogen in the TiAlN lattice. However, higher levels of carbon led to the formation of TiAl(CN) nanocrystals and amorphous carbon phases. These structural changes resulted in a shift in the coating’s growth orientation from (1<!-- --> <!-- -->1<!-- --> <!-- -->1) to (200) and the presence of amorphous carbon at grain boundaries, which contributed to a steady decline in hardness and Young’s modulus. Additionally, the increased carbon content reduced the coatings’ corrosion resistance. These findings highlight the complex interplay between carbon content, microstructure, and performance, providing insights for optimizing TiAlCN coatings.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"30 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of carbon incorporation on the microstructure, morphology, hardness, Young modulus and corrosion resistance of TiAlCN coatings deposited via reactive-HiPIMS\",\"authors\":\"Mohamed Lahouij, Nassima Jaghar, Matej Drobnič, Youssef Samih, Aljaž Drnovšek, Janez Kovač, Miha Čekada, Mohammed Makha, Jones Alami\",\"doi\":\"10.1016/j.apsusc.2024.162115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TiAlCN coatings, designed as advanced alternatives to TiAlN for enhanced tribological performance, were deposited via reactive high-power impulse magnetron sputtering (HiPIMS) with acetylene flow rates varying between 0 and 10 sccm. The carbon content, ranging from 1 at.% to 58 at.%, significantly influenced the microstructure, hardness and Young modulus properties of the coatings. At lower carbon concentrations (up to 17 at.%), carbon atoms substituted nitrogen in the TiAlN lattice. However, higher levels of carbon led to the formation of TiAl(CN) nanocrystals and amorphous carbon phases. These structural changes resulted in a shift in the coating’s growth orientation from (1<!-- --> <!-- -->1<!-- --> <!-- -->1) to (200) and the presence of amorphous carbon at grain boundaries, which contributed to a steady decline in hardness and Young’s modulus. Additionally, the increased carbon content reduced the coatings’ corrosion resistance. These findings highlight the complex interplay between carbon content, microstructure, and performance, providing insights for optimizing TiAlCN coatings.\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apsusc.2024.162115\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.162115","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of carbon incorporation on the microstructure, morphology, hardness, Young modulus and corrosion resistance of TiAlCN coatings deposited via reactive-HiPIMS

Influence of carbon incorporation on the microstructure, morphology, hardness, Young modulus and corrosion resistance of TiAlCN coatings deposited via reactive-HiPIMS
TiAlCN coatings, designed as advanced alternatives to TiAlN for enhanced tribological performance, were deposited via reactive high-power impulse magnetron sputtering (HiPIMS) with acetylene flow rates varying between 0 and 10 sccm. The carbon content, ranging from 1 at.% to 58 at.%, significantly influenced the microstructure, hardness and Young modulus properties of the coatings. At lower carbon concentrations (up to 17 at.%), carbon atoms substituted nitrogen in the TiAlN lattice. However, higher levels of carbon led to the formation of TiAl(CN) nanocrystals and amorphous carbon phases. These structural changes resulted in a shift in the coating’s growth orientation from (1 1 1) to (200) and the presence of amorphous carbon at grain boundaries, which contributed to a steady decline in hardness and Young’s modulus. Additionally, the increased carbon content reduced the coatings’ corrosion resistance. These findings highlight the complex interplay between carbon content, microstructure, and performance, providing insights for optimizing TiAlCN coatings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信