采用双时间窗协议的全身动态 PET 成像深度学习方法

IF 8.6 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Wenxiang Ding, Hanzhong Wang, Xiaoya Qiao, Biao Li, Qiu Huang
{"title":"采用双时间窗协议的全身动态 PET 成像深度学习方法","authors":"Wenxiang Ding, Hanzhong Wang, Xiaoya Qiao, Biao Li, Qiu Huang","doi":"10.1007/s00259-024-07012-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Prolonged scanning durations are one of the primary barriers to the widespread clinical adoption of dynamic Positron Emission Tomography (PET). In this paper, we developed a deep learning algorithm that capable of predicting dynamic images from dual-time-window protocols, thereby shortening the scanning time.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>This study includes 70 patients (mean age ± standard deviation, 53.61 ± 13.53 years; 32 males) diagnosed with pulmonary nodules or breast nodules between 2022 to 2024. Each patient underwent a 65-min dynamic total-body [<sup>18</sup>F]FDG PET/CT scan. Acquisitions using early-stop protocols and dual-time-window protocols were simulated to reduce the scanning time. To predict the missing frames, we developed a bidirectional sequence-to-sequence model with attention mechanism (Bi-AT-Seq2Seq); and then compared the model with unidirectional or non-attentional models in terms of Mean Absolute Error (MAE), Bias, Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity (SSIM) of predicted frames. Furthermore, we reported the comparison of concordance correlation coefficient (CCC) of the kinetic parameters between the proposed method and traditional methods.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The Bi-AT-Seq2Seq significantly outperform unidirectional or non-attentional models in terms of MAE, Bias, PSNR, and SSIM. Using a dual-time-window protocol, which includes a 10-min early scan followed by a 5-min late scan, improves the four metrics of predicted dynamic images by 37.31%, 36.24%, 7.10%, and 0.014% respectively, compared to the early-stop protocol with a 15-min acquisition. The CCCs of tumor’ kinetic parameters estimated with recovered full time-activity-curves (TACs) is higher than those with abbreviated TACs.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>The proposed algorithm can accurately generate a complete dynamic acquisition (65 min) from dual-time-window protocols (10 + 5 min).</p>","PeriodicalId":11909,"journal":{"name":"European Journal of Nuclear Medicine and Molecular Imaging","volume":"23 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning method for total-body dynamic PET imaging with dual-time-window protocols\",\"authors\":\"Wenxiang Ding, Hanzhong Wang, Xiaoya Qiao, Biao Li, Qiu Huang\",\"doi\":\"10.1007/s00259-024-07012-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose</h3><p>Prolonged scanning durations are one of the primary barriers to the widespread clinical adoption of dynamic Positron Emission Tomography (PET). In this paper, we developed a deep learning algorithm that capable of predicting dynamic images from dual-time-window protocols, thereby shortening the scanning time.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>This study includes 70 patients (mean age ± standard deviation, 53.61 ± 13.53 years; 32 males) diagnosed with pulmonary nodules or breast nodules between 2022 to 2024. Each patient underwent a 65-min dynamic total-body [<sup>18</sup>F]FDG PET/CT scan. Acquisitions using early-stop protocols and dual-time-window protocols were simulated to reduce the scanning time. To predict the missing frames, we developed a bidirectional sequence-to-sequence model with attention mechanism (Bi-AT-Seq2Seq); and then compared the model with unidirectional or non-attentional models in terms of Mean Absolute Error (MAE), Bias, Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity (SSIM) of predicted frames. Furthermore, we reported the comparison of concordance correlation coefficient (CCC) of the kinetic parameters between the proposed method and traditional methods.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>The Bi-AT-Seq2Seq significantly outperform unidirectional or non-attentional models in terms of MAE, Bias, PSNR, and SSIM. Using a dual-time-window protocol, which includes a 10-min early scan followed by a 5-min late scan, improves the four metrics of predicted dynamic images by 37.31%, 36.24%, 7.10%, and 0.014% respectively, compared to the early-stop protocol with a 15-min acquisition. The CCCs of tumor’ kinetic parameters estimated with recovered full time-activity-curves (TACs) is higher than those with abbreviated TACs.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>The proposed algorithm can accurately generate a complete dynamic acquisition (65 min) from dual-time-window protocols (10 + 5 min).</p>\",\"PeriodicalId\":11909,\"journal\":{\"name\":\"European Journal of Nuclear Medicine and Molecular Imaging\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Nuclear Medicine and Molecular Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00259-024-07012-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nuclear Medicine and Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00259-024-07012-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep learning method for total-body dynamic PET imaging with dual-time-window protocols

Purpose

Prolonged scanning durations are one of the primary barriers to the widespread clinical adoption of dynamic Positron Emission Tomography (PET). In this paper, we developed a deep learning algorithm that capable of predicting dynamic images from dual-time-window protocols, thereby shortening the scanning time.

Methods

This study includes 70 patients (mean age ± standard deviation, 53.61 ± 13.53 years; 32 males) diagnosed with pulmonary nodules or breast nodules between 2022 to 2024. Each patient underwent a 65-min dynamic total-body [18F]FDG PET/CT scan. Acquisitions using early-stop protocols and dual-time-window protocols were simulated to reduce the scanning time. To predict the missing frames, we developed a bidirectional sequence-to-sequence model with attention mechanism (Bi-AT-Seq2Seq); and then compared the model with unidirectional or non-attentional models in terms of Mean Absolute Error (MAE), Bias, Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity (SSIM) of predicted frames. Furthermore, we reported the comparison of concordance correlation coefficient (CCC) of the kinetic parameters between the proposed method and traditional methods.

Results

The Bi-AT-Seq2Seq significantly outperform unidirectional or non-attentional models in terms of MAE, Bias, PSNR, and SSIM. Using a dual-time-window protocol, which includes a 10-min early scan followed by a 5-min late scan, improves the four metrics of predicted dynamic images by 37.31%, 36.24%, 7.10%, and 0.014% respectively, compared to the early-stop protocol with a 15-min acquisition. The CCCs of tumor’ kinetic parameters estimated with recovered full time-activity-curves (TACs) is higher than those with abbreviated TACs.

Conclusion

The proposed algorithm can accurately generate a complete dynamic acquisition (65 min) from dual-time-window protocols (10 + 5 min).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.60
自引率
9.90%
发文量
392
审稿时长
3 months
期刊介绍: The European Journal of Nuclear Medicine and Molecular Imaging serves as a platform for the exchange of clinical and scientific information within nuclear medicine and related professions. It welcomes international submissions from professionals involved in the functional, metabolic, and molecular investigation of diseases. The journal's coverage spans physics, dosimetry, radiation biology, radiochemistry, and pharmacy, providing high-quality peer review by experts in the field. Known for highly cited and downloaded articles, it ensures global visibility for research work and is part of the EJNMMI journal family.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信