利用功能注释绘制与阿兹海默症相关的罕见变异基因图谱。

Anjali Das, Chirag Lakhani, Chloé Terwagne, Jui-Shan T Lin, Tatsuhiko Naito, Towfique Raj, David A Knowles
{"title":"利用功能注释绘制与阿兹海默症相关的罕见变异基因图谱。","authors":"Anjali Das, Chirag Lakhani, Chloé Terwagne, Jui-Shan T Lin, Tatsuhiko Naito, Towfique Raj, David A Knowles","doi":"10.1101/2024.12.06.24318577","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing availability of whole-genome sequencing (WGS) has begun to elucidate the contribution of rare variants (RVs), both coding and non-coding, to complex disease. Multiple RV association tests are available to study the relationship between genotype and phenotype, but most are restricted to per-gene models and do not fully leverage the availability of variant-level functional annotations. We propose Genome-wide Rare Variant EnRichment Evaluation ( gruyere ), a Bayesian probabilistic model that complements existing methods by learning global, trait-specific weights for functional annotations to improve variant prioritization. We apply gruyere to WGS data from the Alzheimer's Disease (AD) Sequencing Project, consisting of 7,966 cases and 13,412 controls, to identify AD-associated genes and annotations. Growing evidence suggests that disruption of microglial regulation is a key contributor to AD risk, yet existing methods have not had sufficient power to examine rare non-coding effects that incorporate such cell-type specific information. To address this gap, we 1) use predicted enhancer and promoter regions in microglia and other potentially relevant cell types (oligodendrocytes, astrocytes, and neurons) to define per-gene non-coding RV test sets and 2) include cell-type specific variant effect predictions (VEPs) as functional annotations. gruyere identifies 15 significant genetic associations not detected by other RV methods and finds deep learning-based VEPs for splicing, transcription factor binding, and chromatin state are highly predictive of functional non-coding RVs. Our study establishes a novel and robust framework incorporating functional annotations, coding RVs, and cell-type associated non-coding RVs, to perform genome-wide association tests, uncovering AD-relevant genes and annotations.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643288/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging functional annotations to map rare variants associated with Alzheimer's disease with gruyere.\",\"authors\":\"Anjali Das, Chirag Lakhani, Chloé Terwagne, Jui-Shan T Lin, Tatsuhiko Naito, Towfique Raj, David A Knowles\",\"doi\":\"10.1101/2024.12.06.24318577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing availability of whole-genome sequencing (WGS) has begun to elucidate the contribution of rare variants (RVs), both coding and non-coding, to complex disease. Multiple RV association tests are available to study the relationship between genotype and phenotype, but most are restricted to per-gene models and do not fully leverage the availability of variant-level functional annotations. We propose Genome-wide Rare Variant EnRichment Evaluation ( gruyere ), a Bayesian probabilistic model that complements existing methods by learning global, trait-specific weights for functional annotations to improve variant prioritization. We apply gruyere to WGS data from the Alzheimer's Disease (AD) Sequencing Project, consisting of 7,966 cases and 13,412 controls, to identify AD-associated genes and annotations. Growing evidence suggests that disruption of microglial regulation is a key contributor to AD risk, yet existing methods have not had sufficient power to examine rare non-coding effects that incorporate such cell-type specific information. To address this gap, we 1) use predicted enhancer and promoter regions in microglia and other potentially relevant cell types (oligodendrocytes, astrocytes, and neurons) to define per-gene non-coding RV test sets and 2) include cell-type specific variant effect predictions (VEPs) as functional annotations. gruyere identifies 15 significant genetic associations not detected by other RV methods and finds deep learning-based VEPs for splicing, transcription factor binding, and chromatin state are highly predictive of functional non-coding RVs. Our study establishes a novel and robust framework incorporating functional annotations, coding RVs, and cell-type associated non-coding RVs, to perform genome-wide association tests, uncovering AD-relevant genes and annotations.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643288/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.12.06.24318577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.06.24318577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging functional annotations to map rare variants associated with Alzheimer's disease with gruyere.

The increasing availability of whole-genome sequencing (WGS) has begun to elucidate the contribution of rare variants (RVs), both coding and non-coding, to complex disease. Multiple RV association tests are available to study the relationship between genotype and phenotype, but most are restricted to per-gene models and do not fully leverage the availability of variant-level functional annotations. We propose Genome-wide Rare Variant EnRichment Evaluation ( gruyere ), a Bayesian probabilistic model that complements existing methods by learning global, trait-specific weights for functional annotations to improve variant prioritization. We apply gruyere to WGS data from the Alzheimer's Disease (AD) Sequencing Project, consisting of 7,966 cases and 13,412 controls, to identify AD-associated genes and annotations. Growing evidence suggests that disruption of microglial regulation is a key contributor to AD risk, yet existing methods have not had sufficient power to examine rare non-coding effects that incorporate such cell-type specific information. To address this gap, we 1) use predicted enhancer and promoter regions in microglia and other potentially relevant cell types (oligodendrocytes, astrocytes, and neurons) to define per-gene non-coding RV test sets and 2) include cell-type specific variant effect predictions (VEPs) as functional annotations. gruyere identifies 15 significant genetic associations not detected by other RV methods and finds deep learning-based VEPs for splicing, transcription factor binding, and chromatin state are highly predictive of functional non-coding RVs. Our study establishes a novel and robust framework incorporating functional annotations, coding RVs, and cell-type associated non-coding RVs, to perform genome-wide association tests, uncovering AD-relevant genes and annotations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信