基因组网络分析可描述基因结构并识别特异性生物特征。

Jackson G Thorp, Zachary F Gerring, William R Reay, Eske M Derks, Andrew D Grotzinger
{"title":"基因组网络分析可描述基因结构并识别特异性生物特征。","authors":"Jackson G Thorp, Zachary F Gerring, William R Reay, Eske M Derks, Andrew D Grotzinger","doi":"10.1101/2024.12.03.24318432","DOIUrl":null,"url":null,"abstract":"<p><p>Pervasive genetic overlap across human complex traits necessitates developing multivariate methods that can parse pleiotropic and trait-specific genetic signals. Here, we introduce Genomic Network Analysis (GNA), an analytic framework that applies the principles of network modelling to estimates of genetic overlap derived from genome-wide association study (GWAS) summary statistics. The result is a genomic network that describes the conditionally independent genetic associations between traits that remain when controlling for shared signal with the broader network of traits. Graph theory metrics provide added insight by formally quantifying the most important traits in the genomic network. GNA can discover additional trait-specific pathways by incorporating gene expression or genetic variants into the network to estimate their conditional associations with each trait. Extensive simulations establish GNA is well-powered for most GWAS. Application to a diverse set of traits demonstrate that GNA yields critical insight into the genetic architecture that demarcate genetically overlapping traits at varying levels of biological granularity.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643167/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomic network analysis characterizes genetic architecture and identifies trait-specific biology.\",\"authors\":\"Jackson G Thorp, Zachary F Gerring, William R Reay, Eske M Derks, Andrew D Grotzinger\",\"doi\":\"10.1101/2024.12.03.24318432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pervasive genetic overlap across human complex traits necessitates developing multivariate methods that can parse pleiotropic and trait-specific genetic signals. Here, we introduce Genomic Network Analysis (GNA), an analytic framework that applies the principles of network modelling to estimates of genetic overlap derived from genome-wide association study (GWAS) summary statistics. The result is a genomic network that describes the conditionally independent genetic associations between traits that remain when controlling for shared signal with the broader network of traits. Graph theory metrics provide added insight by formally quantifying the most important traits in the genomic network. GNA can discover additional trait-specific pathways by incorporating gene expression or genetic variants into the network to estimate their conditional associations with each trait. Extensive simulations establish GNA is well-powered for most GWAS. Application to a diverse set of traits demonstrate that GNA yields critical insight into the genetic architecture that demarcate genetically overlapping traits at varying levels of biological granularity.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643167/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.12.03.24318432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.03.24318432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类复杂性状中普遍存在遗传重叠现象,因此有必要开发能够解析多效性和特异性遗传信号的多元方法。在此,我们介绍基因组网络分析(GNA),这是一种分析框架,它将网络建模原理应用于从全基因组关联研究(GWAS)汇总统计中得出的遗传重叠估计值。其结果是一个基因组网络,该网络描述了性状之间条件独立的遗传关联,当控制与更广泛的性状网络的共享信号时,这些遗传关联仍然存在。图论指标通过正式量化基因组网络中最重要的性状,提供了更多的洞察力。GNA 可以通过将基因表达或基因变异纳入网络来估计它们与每个性状的条件关联,从而发现更多性状特异性途径。大量模拟证实,GNA 对大多数 GWAS 都有很好的作用。对一系列不同性状的应用表明,GNA 能深入了解在不同生物粒度水平上划分遗传重叠性状的遗传结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genomic network analysis characterizes genetic architecture and identifies trait-specific biology.

Pervasive genetic overlap across human complex traits necessitates developing multivariate methods that can parse pleiotropic and trait-specific genetic signals. Here, we introduce Genomic Network Analysis (GNA), an analytic framework that applies the principles of network modelling to estimates of genetic overlap derived from genome-wide association study (GWAS) summary statistics. The result is a genomic network that describes the conditionally independent genetic associations between traits that remain when controlling for shared signal with the broader network of traits. Graph theory metrics provide added insight by formally quantifying the most important traits in the genomic network. GNA can discover additional trait-specific pathways by incorporating gene expression or genetic variants into the network to estimate their conditional associations with each trait. Extensive simulations establish GNA is well-powered for most GWAS. Application to a diverse set of traits demonstrate that GNA yields critical insight into the genetic architecture that demarcate genetically overlapping traits at varying levels of biological granularity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信