脑磁共振成像扫描的脑转移侵袭模式的机器学习预测。

IF 3.7 Q1 CLINICAL NEUROLOGY
Neuro-oncology advances Pub Date : 2024-11-16 eCollection Date: 2024-01-01 DOI:10.1093/noajnl/vdae200
Keyhan Najafian, Benjamin Rehany, Alexander Nowakowski, Saba Ghazimoghadam, Kevin Pierre, Rita Zakarian, Tariq Al-Saadi, Caroline Reinhold, Abbas Babajani-Feremi, Joshua K Wong, Marie-Christine Guiot, Marie-Constance Lacasse, Stephanie Lam, Peter M Siegel, Kevin Petrecca, Matthew Dankner, Reza Forghani
{"title":"脑磁共振成像扫描的脑转移侵袭模式的机器学习预测。","authors":"Keyhan Najafian, Benjamin Rehany, Alexander Nowakowski, Saba Ghazimoghadam, Kevin Pierre, Rita Zakarian, Tariq Al-Saadi, Caroline Reinhold, Abbas Babajani-Feremi, Joshua K Wong, Marie-Christine Guiot, Marie-Constance Lacasse, Stephanie Lam, Peter M Siegel, Kevin Petrecca, Matthew Dankner, Reza Forghani","doi":"10.1093/noajnl/vdae200","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Brain metastasis invasion pattern (BMIP) is an emerging biomarker associated with recurrence-free and overall survival in patients, and differential response to therapy in preclinical models. Currently, BMIP can only be determined from the histopathological examination of surgical specimens, precluding its use as a biomarker prior to therapy initiation. The aim of this study was to investigate the potential of machine learning (ML) approaches to develop a noninvasive magnetic resonance imaging (MRI)-based biomarker for BMIP determination.</p><p><strong>Methods: </strong>From an initial cohort of 329 patients, a subset of 132 patients met the inclusion criteria for this retrospective study. We evaluated the ability of an expert neuroradiologist to reliably predict BMIP. Thereafter, the dataset was randomly divided into training/validation (80% of cases) and test subsets (20% of cases). The ground truth for BMIP was the histopathologic evaluation of resected specimens. Following MRI sequence co-registration, advanced feature extraction techniques deriving hand-crafted radiomic features with traditional ML classifiers and convolution-based deep learning (CDL) models were trained and evaluated. Different ML approaches were used individually or using ensembling techniques to determine the model with the best performance for BMIP prediction.</p><p><strong>Results: </strong>Expert evaluation of brain MRI scans could not reliably predict BMIP, with an accuracy of 44%-59% depending on the semantic feature used. Among the different ML and CDL models evaluated, the best-performing model achieved an accuracy of 85% and an F1 score of 90%.</p><p><strong>Conclusions: </strong>ML approaches can effectively predict BMIP, representing a noninvasive MRI-based approach to guide the management of patients with brain metastases.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":"6 1","pages":"vdae200"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639946/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning prediction of brain metastasis invasion pattern on brain magnetic resonance imaging scans.\",\"authors\":\"Keyhan Najafian, Benjamin Rehany, Alexander Nowakowski, Saba Ghazimoghadam, Kevin Pierre, Rita Zakarian, Tariq Al-Saadi, Caroline Reinhold, Abbas Babajani-Feremi, Joshua K Wong, Marie-Christine Guiot, Marie-Constance Lacasse, Stephanie Lam, Peter M Siegel, Kevin Petrecca, Matthew Dankner, Reza Forghani\",\"doi\":\"10.1093/noajnl/vdae200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Brain metastasis invasion pattern (BMIP) is an emerging biomarker associated with recurrence-free and overall survival in patients, and differential response to therapy in preclinical models. Currently, BMIP can only be determined from the histopathological examination of surgical specimens, precluding its use as a biomarker prior to therapy initiation. The aim of this study was to investigate the potential of machine learning (ML) approaches to develop a noninvasive magnetic resonance imaging (MRI)-based biomarker for BMIP determination.</p><p><strong>Methods: </strong>From an initial cohort of 329 patients, a subset of 132 patients met the inclusion criteria for this retrospective study. We evaluated the ability of an expert neuroradiologist to reliably predict BMIP. Thereafter, the dataset was randomly divided into training/validation (80% of cases) and test subsets (20% of cases). The ground truth for BMIP was the histopathologic evaluation of resected specimens. Following MRI sequence co-registration, advanced feature extraction techniques deriving hand-crafted radiomic features with traditional ML classifiers and convolution-based deep learning (CDL) models were trained and evaluated. Different ML approaches were used individually or using ensembling techniques to determine the model with the best performance for BMIP prediction.</p><p><strong>Results: </strong>Expert evaluation of brain MRI scans could not reliably predict BMIP, with an accuracy of 44%-59% depending on the semantic feature used. Among the different ML and CDL models evaluated, the best-performing model achieved an accuracy of 85% and an F1 score of 90%.</p><p><strong>Conclusions: </strong>ML approaches can effectively predict BMIP, representing a noninvasive MRI-based approach to guide the management of patients with brain metastases.</p>\",\"PeriodicalId\":94157,\"journal\":{\"name\":\"Neuro-oncology advances\",\"volume\":\"6 1\",\"pages\":\"vdae200\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639946/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-oncology advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/noajnl/vdae200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:脑转移侵袭模式(BMIP)是一种新兴的生物标志物,它与患者的无复发生存率和总生存率以及临床前模型对治疗的不同反应相关。目前,BMIP只能通过手术标本的组织病理学检查来确定,因此无法在开始治疗前将其用作生物标志物。本研究旨在研究机器学习(ML)方法的潜力,以开发一种基于磁共振成像(MRI)的无创生物标记物,用于确定BMIP:在最初的 329 例患者中,有 132 例患者符合这项回顾性研究的纳入标准。我们评估了神经放射专家可靠预测 BMIP 的能力。之后,数据集被随机分为训练/验证子集(80% 的病例)和测试子集(20% 的病例)。BMIP 的基本事实是切除标本的组织病理学评估。在核磁共振成像序列共配准之后,通过传统的 ML 分类器和基于卷积的深度学习(CDL)模型训练和评估了先进的特征提取技术,这些特征提取技术可得出手工创建的放射学特征。对不同的 ML 方法单独使用或使用集合技术,以确定 BMIP 预测性能最佳的模型:专家对脑磁共振成像扫描的评估无法可靠地预测 BMIP,准确率为 44%-59%,具体取决于所使用的语义特征。在评估的不同 ML 和 CDL 模型中,表现最好的模型准确率达到 85%,F1 分数达到 90%:ML方法可有效预测BMIP,是一种基于磁共振成像的无创方法,可指导脑转移患者的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning prediction of brain metastasis invasion pattern on brain magnetic resonance imaging scans.

Background: Brain metastasis invasion pattern (BMIP) is an emerging biomarker associated with recurrence-free and overall survival in patients, and differential response to therapy in preclinical models. Currently, BMIP can only be determined from the histopathological examination of surgical specimens, precluding its use as a biomarker prior to therapy initiation. The aim of this study was to investigate the potential of machine learning (ML) approaches to develop a noninvasive magnetic resonance imaging (MRI)-based biomarker for BMIP determination.

Methods: From an initial cohort of 329 patients, a subset of 132 patients met the inclusion criteria for this retrospective study. We evaluated the ability of an expert neuroradiologist to reliably predict BMIP. Thereafter, the dataset was randomly divided into training/validation (80% of cases) and test subsets (20% of cases). The ground truth for BMIP was the histopathologic evaluation of resected specimens. Following MRI sequence co-registration, advanced feature extraction techniques deriving hand-crafted radiomic features with traditional ML classifiers and convolution-based deep learning (CDL) models were trained and evaluated. Different ML approaches were used individually or using ensembling techniques to determine the model with the best performance for BMIP prediction.

Results: Expert evaluation of brain MRI scans could not reliably predict BMIP, with an accuracy of 44%-59% depending on the semantic feature used. Among the different ML and CDL models evaluated, the best-performing model achieved an accuracy of 85% and an F1 score of 90%.

Conclusions: ML approaches can effectively predict BMIP, representing a noninvasive MRI-based approach to guide the management of patients with brain metastases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信