Xinyue Dou, Sariah Saalah, Chel-Ken Chiam, Jianping Xie and Coswald Stephen Sipaut
{"title":"超小型金属纳米团簇作为生物成像的高效发光探针。","authors":"Xinyue Dou, Sariah Saalah, Chel-Ken Chiam, Jianping Xie and Coswald Stephen Sipaut","doi":"10.1039/D4TB02207F","DOIUrl":null,"url":null,"abstract":"<p >Ultrasmall metal nanoclusters (NCs, <2 nm) have emerged as a novel class of luminescent probes due to their atomically precise size and tailored physicochemical properties. The rapid advancements in the design and utilization of metal NC-based luminescent probes are facilitated by the atomic-level manipulation of metal NCs. This review article explores (i) the engineering of metal NCs’ functions for bioimaging applications, and (ii) the diverse uses of metal NCs in bioimaging. We begin by presenting an overview of the engineering functions of metal NCs as luminescent probes for bioimaging applications, highlighting key strategies for enhancing NCs’ luminescence, biocompatibility and targeting capabilities towards biological specimens. Our discussion then centers on the bioimaging applications of metal NCs in subcellular organelles, individual cells, tissues, and entire organs. Finally, we offer a perspective on the challenges and potential developments in the future use of metal NCs for bioimaging applications.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 4","pages":" 1180-1194"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasmall metal nanoclusters as efficient luminescent probes for bioimaging\",\"authors\":\"Xinyue Dou, Sariah Saalah, Chel-Ken Chiam, Jianping Xie and Coswald Stephen Sipaut\",\"doi\":\"10.1039/D4TB02207F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ultrasmall metal nanoclusters (NCs, <2 nm) have emerged as a novel class of luminescent probes due to their atomically precise size and tailored physicochemical properties. The rapid advancements in the design and utilization of metal NC-based luminescent probes are facilitated by the atomic-level manipulation of metal NCs. This review article explores (i) the engineering of metal NCs’ functions for bioimaging applications, and (ii) the diverse uses of metal NCs in bioimaging. We begin by presenting an overview of the engineering functions of metal NCs as luminescent probes for bioimaging applications, highlighting key strategies for enhancing NCs’ luminescence, biocompatibility and targeting capabilities towards biological specimens. Our discussion then centers on the bioimaging applications of metal NCs in subcellular organelles, individual cells, tissues, and entire organs. Finally, we offer a perspective on the challenges and potential developments in the future use of metal NCs for bioimaging applications.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 4\",\"pages\":\" 1180-1194\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02207f\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02207f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Ultrasmall metal nanoclusters as efficient luminescent probes for bioimaging
Ultrasmall metal nanoclusters (NCs, <2 nm) have emerged as a novel class of luminescent probes due to their atomically precise size and tailored physicochemical properties. The rapid advancements in the design and utilization of metal NC-based luminescent probes are facilitated by the atomic-level manipulation of metal NCs. This review article explores (i) the engineering of metal NCs’ functions for bioimaging applications, and (ii) the diverse uses of metal NCs in bioimaging. We begin by presenting an overview of the engineering functions of metal NCs as luminescent probes for bioimaging applications, highlighting key strategies for enhancing NCs’ luminescence, biocompatibility and targeting capabilities towards biological specimens. Our discussion then centers on the bioimaging applications of metal NCs in subcellular organelles, individual cells, tissues, and entire organs. Finally, we offer a perspective on the challenges and potential developments in the future use of metal NCs for bioimaging applications.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices