Haotian Yu, Yan Shi, Xiaotong Wu, Bingjie Hu, Hao Jin, Kassim Yassin, Tariq Iqbal, Omaima Mohamed Kandil, Esraa Aly Ismail, Huanan Wang, Shaohua Wang, Kun Zhang
{"title":"TEAD3和TEAD4在牛着床前发育中起重叠作用。","authors":"Haotian Yu, Yan Shi, Xiaotong Wu, Bingjie Hu, Hao Jin, Kassim Yassin, Tariq Iqbal, Omaima Mohamed Kandil, Esraa Aly Ismail, Huanan Wang, Shaohua Wang, Kun Zhang","doi":"10.1530/REP-24-0307","DOIUrl":null,"url":null,"abstract":"<p><p>During mammalian preimplantation development, the transition from morula to blastocyst is a critical biological event. This process involves polarization and initial specification of lineages, regulated by various transcription factors that have been extensively studied in mice. Our single-cell RNA sequencing analyses revealed that TEAD3 is specifically expressed in the trophectoderm cells of bovine preimplantation embryos, unlike in mice. The objective of this study is to determine the functional role of TEAD3 in bovine preimplantation development. While TEAD3 knockdown does not affect blastocyst formation in cattle, embryos fail to progress to the blastocyst stage when both TEAD3 and TEAD4, another member of the TEAD family, are disrupted using RNA interference and base editing techniques, respectively. This finding suggests a redundant role for TEAD3 and TEAD4 in preimplantation development in cattle. RNA sequencing analysis identified dysregulation of 215 genes, with 53 genes upregulated and 162 genes downregulated. Notably, we observed a reduction in the expression of trophectoderm-specifier genes KRT8, KRT18, and EZR, as well as HIPPO signaling pathway components. Immunofluorescence analysis further revealed that the protein expression levels of KRT8 and EZR were significantly decreased. Importantly, the initial expression of trophectoderm lineage-specific factors such as TFAP2C and GATA3, as well as the inner cell mass lineage-specific transcription factor OCT4, remained unaffected. This contrasts with the role of TEAD4 in directly regulating trophectoderm lineage specification in mice. Thus, our studies demonstrate that TEAD3 and TEAD4 play essential and redundant roles upstream of TE fate decisions during preimplantation development in cattle.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TEAD3 and TEAD4 play overlapping role in bovine preimplantation development.\",\"authors\":\"Haotian Yu, Yan Shi, Xiaotong Wu, Bingjie Hu, Hao Jin, Kassim Yassin, Tariq Iqbal, Omaima Mohamed Kandil, Esraa Aly Ismail, Huanan Wang, Shaohua Wang, Kun Zhang\",\"doi\":\"10.1530/REP-24-0307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During mammalian preimplantation development, the transition from morula to blastocyst is a critical biological event. This process involves polarization and initial specification of lineages, regulated by various transcription factors that have been extensively studied in mice. Our single-cell RNA sequencing analyses revealed that TEAD3 is specifically expressed in the trophectoderm cells of bovine preimplantation embryos, unlike in mice. The objective of this study is to determine the functional role of TEAD3 in bovine preimplantation development. While TEAD3 knockdown does not affect blastocyst formation in cattle, embryos fail to progress to the blastocyst stage when both TEAD3 and TEAD4, another member of the TEAD family, are disrupted using RNA interference and base editing techniques, respectively. This finding suggests a redundant role for TEAD3 and TEAD4 in preimplantation development in cattle. RNA sequencing analysis identified dysregulation of 215 genes, with 53 genes upregulated and 162 genes downregulated. Notably, we observed a reduction in the expression of trophectoderm-specifier genes KRT8, KRT18, and EZR, as well as HIPPO signaling pathway components. Immunofluorescence analysis further revealed that the protein expression levels of KRT8 and EZR were significantly decreased. Importantly, the initial expression of trophectoderm lineage-specific factors such as TFAP2C and GATA3, as well as the inner cell mass lineage-specific transcription factor OCT4, remained unaffected. This contrasts with the role of TEAD4 in directly regulating trophectoderm lineage specification in mice. Thus, our studies demonstrate that TEAD3 and TEAD4 play essential and redundant roles upstream of TE fate decisions during preimplantation development in cattle.</p>\",\"PeriodicalId\":21127,\"journal\":{\"name\":\"Reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1530/REP-24-0307\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-24-0307","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
TEAD3 and TEAD4 play overlapping role in bovine preimplantation development.
During mammalian preimplantation development, the transition from morula to blastocyst is a critical biological event. This process involves polarization and initial specification of lineages, regulated by various transcription factors that have been extensively studied in mice. Our single-cell RNA sequencing analyses revealed that TEAD3 is specifically expressed in the trophectoderm cells of bovine preimplantation embryos, unlike in mice. The objective of this study is to determine the functional role of TEAD3 in bovine preimplantation development. While TEAD3 knockdown does not affect blastocyst formation in cattle, embryos fail to progress to the blastocyst stage when both TEAD3 and TEAD4, another member of the TEAD family, are disrupted using RNA interference and base editing techniques, respectively. This finding suggests a redundant role for TEAD3 and TEAD4 in preimplantation development in cattle. RNA sequencing analysis identified dysregulation of 215 genes, with 53 genes upregulated and 162 genes downregulated. Notably, we observed a reduction in the expression of trophectoderm-specifier genes KRT8, KRT18, and EZR, as well as HIPPO signaling pathway components. Immunofluorescence analysis further revealed that the protein expression levels of KRT8 and EZR were significantly decreased. Importantly, the initial expression of trophectoderm lineage-specific factors such as TFAP2C and GATA3, as well as the inner cell mass lineage-specific transcription factor OCT4, remained unaffected. This contrasts with the role of TEAD4 in directly regulating trophectoderm lineage specification in mice. Thus, our studies demonstrate that TEAD3 and TEAD4 play essential and redundant roles upstream of TE fate decisions during preimplantation development in cattle.
期刊介绍:
Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction.
Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease.
Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.