{"title":"己糖转运体CsHT3和CsHT16调节黄瓜韧皮部后转运和果实发育。","authors":"Jintao Cheng, Suying Wen, Kexin Li, Yixuan Zhou, Mengtian Zhu, H Ekkehard Neuhaus, Zhilong Bie","doi":"10.1093/plphys/kiae597","DOIUrl":null,"url":null,"abstract":"<p><p>Hexoses are essential for plant growth and fruit development. However, the precise roles of hexose/H+ symporters in postphloem sugar transport and cellular sugar homeostasis in rapidly growing fruits remain elusive. To elucidate the functions of hexose/H+ symporters in cucumber (Cucumis sativus L.) fruits, we conducted comprehensive analyses of their tissue-specific expression, localization, transport characteristics, and physiological functions. Our results demonstrate that CsHT3 (C. sativus hexose transporter), CsHT12, and CsHT16 are the primary hexose/H+ symporters expressed in cucumber fruits. CsHT3 and CsHT16 are localized in the sieve element-companion cell during the ovary and early fruit development stages. As the fruit develops and expands, the expression of both symporters shifts to phloem parenchyma cells. The CsHT16 knockout mutant produces shorter fruits with a larger circumference, likely due to impaired sugar and phytohormone homeostasis. Concurrent reduction of CsHT3, CsHT12, and CsHT16 expression leads to decreased fruit size. Conversely, CsHT3 overexpression results in increased fruit size and higher fruit sugar levels. These findings suggest that CsHT16 plays an important role in maintaining sugar homeostasis, which shapes the fruit, while CsHT3, CsHT12, and CsHT16 collectively regulate the supply of carbohydrates required for cucumber fruit enlargement.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The hexose transporters CsHT3 and CsHT16 regulate postphloem transport and fruit development in cucumber.\",\"authors\":\"Jintao Cheng, Suying Wen, Kexin Li, Yixuan Zhou, Mengtian Zhu, H Ekkehard Neuhaus, Zhilong Bie\",\"doi\":\"10.1093/plphys/kiae597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hexoses are essential for plant growth and fruit development. However, the precise roles of hexose/H+ symporters in postphloem sugar transport and cellular sugar homeostasis in rapidly growing fruits remain elusive. To elucidate the functions of hexose/H+ symporters in cucumber (Cucumis sativus L.) fruits, we conducted comprehensive analyses of their tissue-specific expression, localization, transport characteristics, and physiological functions. Our results demonstrate that CsHT3 (C. sativus hexose transporter), CsHT12, and CsHT16 are the primary hexose/H+ symporters expressed in cucumber fruits. CsHT3 and CsHT16 are localized in the sieve element-companion cell during the ovary and early fruit development stages. As the fruit develops and expands, the expression of both symporters shifts to phloem parenchyma cells. The CsHT16 knockout mutant produces shorter fruits with a larger circumference, likely due to impaired sugar and phytohormone homeostasis. Concurrent reduction of CsHT3, CsHT12, and CsHT16 expression leads to decreased fruit size. Conversely, CsHT3 overexpression results in increased fruit size and higher fruit sugar levels. These findings suggest that CsHT16 plays an important role in maintaining sugar homeostasis, which shapes the fruit, while CsHT3, CsHT12, and CsHT16 collectively regulate the supply of carbohydrates required for cucumber fruit enlargement.</p>\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae597\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae597","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The hexose transporters CsHT3 and CsHT16 regulate postphloem transport and fruit development in cucumber.
Hexoses are essential for plant growth and fruit development. However, the precise roles of hexose/H+ symporters in postphloem sugar transport and cellular sugar homeostasis in rapidly growing fruits remain elusive. To elucidate the functions of hexose/H+ symporters in cucumber (Cucumis sativus L.) fruits, we conducted comprehensive analyses of their tissue-specific expression, localization, transport characteristics, and physiological functions. Our results demonstrate that CsHT3 (C. sativus hexose transporter), CsHT12, and CsHT16 are the primary hexose/H+ symporters expressed in cucumber fruits. CsHT3 and CsHT16 are localized in the sieve element-companion cell during the ovary and early fruit development stages. As the fruit develops and expands, the expression of both symporters shifts to phloem parenchyma cells. The CsHT16 knockout mutant produces shorter fruits with a larger circumference, likely due to impaired sugar and phytohormone homeostasis. Concurrent reduction of CsHT3, CsHT12, and CsHT16 expression leads to decreased fruit size. Conversely, CsHT3 overexpression results in increased fruit size and higher fruit sugar levels. These findings suggest that CsHT16 plays an important role in maintaining sugar homeostasis, which shapes the fruit, while CsHT3, CsHT12, and CsHT16 collectively regulate the supply of carbohydrates required for cucumber fruit enlargement.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.