吸烟对人和小鼠肠道菌群和短链脂肪酸的影响:对慢性阻塞性肺病的影响。

IF 7.9 2区 医学 Q1 IMMUNOLOGY
Shiro Otake, Shotaro Chubachi, Junki Miyamoto, Yuri Haneishi, Tetsuya Arai, Hideto Iizuka, Takashi Shimada, Kaori Sakurai, Shinichi Okuzumi, Hiroki Kabata, Takanori Asakura, Jun Miyata, Junichiro Irie, Koichiro Asano, Hidetoshi Nakamura, Ikuo Kimura, Koichi Fukunaga
{"title":"吸烟对人和小鼠肠道菌群和短链脂肪酸的影响:对慢性阻塞性肺病的影响。","authors":"Shiro Otake, Shotaro Chubachi, Junki Miyamoto, Yuri Haneishi, Tetsuya Arai, Hideto Iizuka, Takashi Shimada, Kaori Sakurai, Shinichi Okuzumi, Hiroki Kabata, Takanori Asakura, Jun Miyata, Junichiro Irie, Koichiro Asano, Hidetoshi Nakamura, Ikuo Kimura, Koichi Fukunaga","doi":"10.1016/j.mucimm.2024.12.006","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to elucidate the dynamic changes in short-chain fatty acids (SCFA) produced by the gut microbiota following smoking exposure and their role in chronic obstructive pulmonary disease (COPD) pathogenesis. SCFA concentrations were measured in human plasma, comparing non-smokers (n = 6) and smokers (n = 12). Using a mouse COPD model induced by cigarette smoke exposure or elastase-induced emphysema, we modulated SCFA levels through dietary interventions and antibiotics to evaluate their effects on inflammation and alveolar destruction. Human smokers showed lower plasma SCFA concentrations than non-smokers, with plasma propionic acid positively correlating with forced expiratory volume in 1 s/forced vital capacity. Three-month smoking-exposed mice demonstrated altered gut microbiota and significantly reduced fecal SCFA concentrations compared to air-exposed controls. In these mice, a high-fiber diet increased fecal SCFAs and mitigated inflammation and alveolar destruction, while antibiotics decreased fecal SCFAs and exacerbated disease features. However, in the elastase-induced model, fecal SCFA concentration remained unchanged, and high-fiber diet or antibiotic interventions had no significant effect. These findings suggest that smoking exposure alters gut microbiota and SCFA production through its systemic effects. The anti-inflammatory properties of SCFAs may play a role in COPD pathogenesis, highlighting their potential as therapeutic targets.</p>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":" ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of smoking on gut microbiota and short-chain fatty acids in human and mice: Implications for COPD.\",\"authors\":\"Shiro Otake, Shotaro Chubachi, Junki Miyamoto, Yuri Haneishi, Tetsuya Arai, Hideto Iizuka, Takashi Shimada, Kaori Sakurai, Shinichi Okuzumi, Hiroki Kabata, Takanori Asakura, Jun Miyata, Junichiro Irie, Koichiro Asano, Hidetoshi Nakamura, Ikuo Kimura, Koichi Fukunaga\",\"doi\":\"10.1016/j.mucimm.2024.12.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We aimed to elucidate the dynamic changes in short-chain fatty acids (SCFA) produced by the gut microbiota following smoking exposure and their role in chronic obstructive pulmonary disease (COPD) pathogenesis. SCFA concentrations were measured in human plasma, comparing non-smokers (n = 6) and smokers (n = 12). Using a mouse COPD model induced by cigarette smoke exposure or elastase-induced emphysema, we modulated SCFA levels through dietary interventions and antibiotics to evaluate their effects on inflammation and alveolar destruction. Human smokers showed lower plasma SCFA concentrations than non-smokers, with plasma propionic acid positively correlating with forced expiratory volume in 1 s/forced vital capacity. Three-month smoking-exposed mice demonstrated altered gut microbiota and significantly reduced fecal SCFA concentrations compared to air-exposed controls. In these mice, a high-fiber diet increased fecal SCFAs and mitigated inflammation and alveolar destruction, while antibiotics decreased fecal SCFAs and exacerbated disease features. However, in the elastase-induced model, fecal SCFA concentration remained unchanged, and high-fiber diet or antibiotic interventions had no significant effect. These findings suggest that smoking exposure alters gut microbiota and SCFA production through its systemic effects. The anti-inflammatory properties of SCFAs may play a role in COPD pathogenesis, highlighting their potential as therapeutic targets.</p>\",\"PeriodicalId\":18877,\"journal\":{\"name\":\"Mucosal Immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mucosal Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mucimm.2024.12.006\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mucosal Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mucimm.2024.12.006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们旨在阐明吸烟后肠道微生物群产生的短链脂肪酸(SCFA)的动态变化及其在慢性阻塞性肺病(COPD)发病机制中的作用。通过比较非吸烟者(6 人)和吸烟者(12 人),测量了人体血浆中的 SCFA 浓度。我们使用香烟烟雾暴露或弹性蛋白酶诱发肺气肿的小鼠慢性阻塞性肺病模型,通过饮食干预和抗生素调节 SCFA 水平,以评估它们对炎症和肺泡破坏的影响。吸烟者的血浆 SCFA 浓度低于非吸烟者,血浆丙酸与 1 秒用力呼气量/用力肺活量呈正相关。与接触空气的对照组相比,接触吸烟三个月的小鼠肠道微生物群发生了改变,粪便中的 SCFA 浓度显著降低。在这些小鼠中,高纤维饮食增加了粪便中的 SCFAs,减轻了炎症和肺泡破坏,而抗生素则减少了粪便中的 SCFAs,加重了疾病特征。然而,在弹性蛋白酶诱导的模型中,粪便中的SCFA浓度保持不变,高纤维饮食或抗生素干预没有明显效果。这些发现表明,吸烟会通过其全身效应改变肠道微生物群和 SCFA 的产生。SCFAs的抗炎特性可能在慢性阻塞性肺病的发病机制中发挥作用,这凸显了其作为治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of smoking on gut microbiota and short-chain fatty acids in human and mice: Implications for COPD.

We aimed to elucidate the dynamic changes in short-chain fatty acids (SCFA) produced by the gut microbiota following smoking exposure and their role in chronic obstructive pulmonary disease (COPD) pathogenesis. SCFA concentrations were measured in human plasma, comparing non-smokers (n = 6) and smokers (n = 12). Using a mouse COPD model induced by cigarette smoke exposure or elastase-induced emphysema, we modulated SCFA levels through dietary interventions and antibiotics to evaluate their effects on inflammation and alveolar destruction. Human smokers showed lower plasma SCFA concentrations than non-smokers, with plasma propionic acid positively correlating with forced expiratory volume in 1 s/forced vital capacity. Three-month smoking-exposed mice demonstrated altered gut microbiota and significantly reduced fecal SCFA concentrations compared to air-exposed controls. In these mice, a high-fiber diet increased fecal SCFAs and mitigated inflammation and alveolar destruction, while antibiotics decreased fecal SCFAs and exacerbated disease features. However, in the elastase-induced model, fecal SCFA concentration remained unchanged, and high-fiber diet or antibiotic interventions had no significant effect. These findings suggest that smoking exposure alters gut microbiota and SCFA production through its systemic effects. The anti-inflammatory properties of SCFAs may play a role in COPD pathogenesis, highlighting their potential as therapeutic targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mucosal Immunology
Mucosal Immunology 医学-免疫学
CiteScore
16.60
自引率
3.80%
发文量
100
审稿时长
12 days
期刊介绍: Mucosal Immunology, the official publication of the Society of Mucosal Immunology (SMI), serves as a forum for both basic and clinical scientists to discuss immunity and inflammation involving mucosal tissues. It covers gastrointestinal, pulmonary, nasopharyngeal, oral, ocular, and genitourinary immunology through original research articles, scholarly reviews, commentaries, editorials, and letters. The journal gives equal consideration to basic, translational, and clinical studies and also serves as a primary communication channel for the SMI governing board and its members, featuring society news, meeting announcements, policy discussions, and job/training opportunities advertisements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信