{"title":"1+1<2: Combined effect of low temperature stress and salt stress on Sesuvium portulacastrum L.","authors":"Wei Liu, Jinlin Liu, Meijing Zhang, Jianlin Zhang, Bin Sun, Chiquan He, Peimin He, Wentao Zhang","doi":"10.1016/j.plaphy.2024.109404","DOIUrl":null,"url":null,"abstract":"<p><p>To expedite the deployment of Sesuvium portulacastrum floating bed technology in Hangzhou Bay and the Yangtze River Estuary, and to overcome the cryogenic constraint, our study concentrated on investigating the impacts of both individual and combined stress factors, particularly low temperature and salinity, on its application. We detected the S. portulacastrum related enzyme activity and other biological macromolecules under low temperature stress, salt stress and combined stress. And we also analyzed the stress resistance mechanism under different stress conditions by transcriptomic technology. It was discovered that moderate salt stress could enhance plant tolerance to low temperature, indicating the presence of an antagonistic relationship between salinity and low temperature. The biological mechanism underlying this phenomenon lies in the fact that combined stresses induce the up-regulation of various genes and activate more pathways compared to single stress. Among these pathways, the linoleic acid metabolic pathway stands out as unique to combined stress conditions. This research represents the inaugural endeavor to investigate the impact of low temperature stress and combined stress on S.portulacastrum, offering a pivotal reference for the utilization of this plant in ecological restoration and management within the East China Sea. More valuable is that such conclusions may be extended to the coastal ecological governance of many high latitude countries, which is of great significance for global ecological environment improvement.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"219 ","pages":"109404"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109404","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
1+1<2: Combined effect of low temperature stress and salt stress on Sesuvium portulacastrum L.
To expedite the deployment of Sesuvium portulacastrum floating bed technology in Hangzhou Bay and the Yangtze River Estuary, and to overcome the cryogenic constraint, our study concentrated on investigating the impacts of both individual and combined stress factors, particularly low temperature and salinity, on its application. We detected the S. portulacastrum related enzyme activity and other biological macromolecules under low temperature stress, salt stress and combined stress. And we also analyzed the stress resistance mechanism under different stress conditions by transcriptomic technology. It was discovered that moderate salt stress could enhance plant tolerance to low temperature, indicating the presence of an antagonistic relationship between salinity and low temperature. The biological mechanism underlying this phenomenon lies in the fact that combined stresses induce the up-regulation of various genes and activate more pathways compared to single stress. Among these pathways, the linoleic acid metabolic pathway stands out as unique to combined stress conditions. This research represents the inaugural endeavor to investigate the impact of low temperature stress and combined stress on S.portulacastrum, offering a pivotal reference for the utilization of this plant in ecological restoration and management within the East China Sea. More valuable is that such conclusions may be extended to the coastal ecological governance of many high latitude countries, which is of great significance for global ecological environment improvement.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.