单个葡萄果实的时间分辨转录组学:膜运输是双西格玛生长的开关。

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Stefania Savoi, Mengyao Shi, Gautier Sarah, Audrey Weber, Laurent Torregrosa, Charles Romieu
{"title":"单个葡萄果实的时间分辨转录组学:膜运输是双西格玛生长的开关。","authors":"Stefania Savoi, Mengyao Shi, Gautier Sarah, Audrey Weber, Laurent Torregrosa, Charles Romieu","doi":"10.1093/jxb/erae502","DOIUrl":null,"url":null,"abstract":"<p><p>By revealing that the grape berry loses one H+ per accumulated sucrose at the inception of ripening, adopting a single fruit paradigm elucidates the fundamentals of the malate-sugar nexus, previously obscured by asynchrony in population-based models of ripening. More broadly, the development of the individual fruit was revisited from scratch to capture the simultaneous changes in gene expression and metabolic fluxes in a kinetically relevant way from flowering to overripening. Dynamics in water, tartrate, malate, hexoses, and K+ fluxes obtained by combining individual single fruit growth and concentration data allowed to define eleven sub-phases in fruit development, which distributed on a rigorous curve in RNAseq PCA. WGCNA achieved unprecedented time resolutions in exploring transcript level-metabolic rate associations. A comprehensive set of membrane transporters was found specifically expressed during the first growth phase related to vacuolar over-acidification. Unlike in slightly more acidic citrus, H+ V-PPase transcripts were predominantly expressed, followed by V-ATPase, clarifying the thermodynamic limit beyond which their replacement by the tonoplast P3A/P3B ATPase (PH5/PH1) complex turns compulsory. Puzzlingly, bona fide aluminum-activated malate transporter (ALMT) kept a low profile at this stage, possibly replaced by a predominating uncharacterized anion channel. At the onset of ripening, the switch role of hexose transporter HT6 in sugar accumulation is confirmed, electroneutralized by malate vacuolar leakage and H+ pumps activation.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-resolved transcriptomic of single V. vinifera fruits: membrane transports as switches of the double sigmoidal growth.\",\"authors\":\"Stefania Savoi, Mengyao Shi, Gautier Sarah, Audrey Weber, Laurent Torregrosa, Charles Romieu\",\"doi\":\"10.1093/jxb/erae502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>By revealing that the grape berry loses one H+ per accumulated sucrose at the inception of ripening, adopting a single fruit paradigm elucidates the fundamentals of the malate-sugar nexus, previously obscured by asynchrony in population-based models of ripening. More broadly, the development of the individual fruit was revisited from scratch to capture the simultaneous changes in gene expression and metabolic fluxes in a kinetically relevant way from flowering to overripening. Dynamics in water, tartrate, malate, hexoses, and K+ fluxes obtained by combining individual single fruit growth and concentration data allowed to define eleven sub-phases in fruit development, which distributed on a rigorous curve in RNAseq PCA. WGCNA achieved unprecedented time resolutions in exploring transcript level-metabolic rate associations. A comprehensive set of membrane transporters was found specifically expressed during the first growth phase related to vacuolar over-acidification. Unlike in slightly more acidic citrus, H+ V-PPase transcripts were predominantly expressed, followed by V-ATPase, clarifying the thermodynamic limit beyond which their replacement by the tonoplast P3A/P3B ATPase (PH5/PH1) complex turns compulsory. Puzzlingly, bona fide aluminum-activated malate transporter (ALMT) kept a low profile at this stage, possibly replaced by a predominating uncharacterized anion channel. At the onset of ripening, the switch role of hexose transporter HT6 in sugar accumulation is confirmed, electroneutralized by malate vacuolar leakage and H+ pumps activation.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/erae502\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae502","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过揭示葡萄浆果在成熟初期每积累一个蔗糖就会损失一个H+,采用单果模式阐明了苹果酸-糖关系的基本原理,而此前基于群体的成熟模型的不同步性掩盖了这一基本原理。更广泛地说,我们从头开始重新审视了单个果实的发育过程,以捕捉从开花到过熟期间基因表达和代谢通量的同步变化。通过结合单个果实的生长和浓度数据,获得了水、酒石酸盐、苹果酸盐、己糖和 K+ 通量的动态变化,从而确定了果实发育的 11 个子阶段,这些子阶段分布在 RNAseq PCA 的严格曲线上。WGCNA 在探索转录本水平与代谢率的关联方面实现了前所未有的时间分辨率。在与液泡过度酸化有关的第一个生长阶段,发现了一整套特异表达的膜转运体。与酸性稍强的柑橘不同,H+ V-PPase 转录本主要表达,其次是 V-ATPase,这阐明了热力学极限,超过这个极限,它们就必须被营养体 P3A/P3B ATPase(PH5/PH1)复合体取代。令人费解的是,真正的铝激活苹果酸盐转运体(ALMT)在这一阶段保持低调,可能被主要的未定性阴离子通道所取代。在成熟期开始时,己糖转运体 HT6 在糖积累中的开关作用得到了证实,并被苹果酸液泡渗漏和 H+ 泵激活所电中和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-resolved transcriptomic of single V. vinifera fruits: membrane transports as switches of the double sigmoidal growth.

By revealing that the grape berry loses one H+ per accumulated sucrose at the inception of ripening, adopting a single fruit paradigm elucidates the fundamentals of the malate-sugar nexus, previously obscured by asynchrony in population-based models of ripening. More broadly, the development of the individual fruit was revisited from scratch to capture the simultaneous changes in gene expression and metabolic fluxes in a kinetically relevant way from flowering to overripening. Dynamics in water, tartrate, malate, hexoses, and K+ fluxes obtained by combining individual single fruit growth and concentration data allowed to define eleven sub-phases in fruit development, which distributed on a rigorous curve in RNAseq PCA. WGCNA achieved unprecedented time resolutions in exploring transcript level-metabolic rate associations. A comprehensive set of membrane transporters was found specifically expressed during the first growth phase related to vacuolar over-acidification. Unlike in slightly more acidic citrus, H+ V-PPase transcripts were predominantly expressed, followed by V-ATPase, clarifying the thermodynamic limit beyond which their replacement by the tonoplast P3A/P3B ATPase (PH5/PH1) complex turns compulsory. Puzzlingly, bona fide aluminum-activated malate transporter (ALMT) kept a low profile at this stage, possibly replaced by a predominating uncharacterized anion channel. At the onset of ripening, the switch role of hexose transporter HT6 in sugar accumulation is confirmed, electroneutralized by malate vacuolar leakage and H+ pumps activation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信