Qing Wang, Kjell De Vriese, Sandrien Desmet, Ren Wang, Markéta Luklová, Qianqian Liu, Jacob Pollier, Qing Lu, Sarah Schlag, Walter Vetter, Alain Goossens, Eugenia Russinova, Geert Goeminne, Danny Geelen, Tom Beeckman, Steffen Vanneste
{"title":"选择性雌激素受体调节剂氯米芬抑制拟南芥固醇的生物合成","authors":"Qing Wang, Kjell De Vriese, Sandrien Desmet, Ren Wang, Markéta Luklová, Qianqian Liu, Jacob Pollier, Qing Lu, Sarah Schlag, Walter Vetter, Alain Goossens, Eugenia Russinova, Geert Goeminne, Danny Geelen, Tom Beeckman, Steffen Vanneste","doi":"10.1093/jxb/erae481","DOIUrl":null,"url":null,"abstract":"<p><p>Sterols are produced via complex, multistep biosynthetic pathways involving similar enzymatic conversions in plants, animals and fungi, yielding a variety of sterol metabolites with slightly different chemical properties to exert diverse and specific functions. A tremendously diverse landscape of sterols, and sterol-derived compounds, can be found across the plant kingdom, determining a wide spectrum of functions. Resolving the underlying biosynthetic pathways is thus instrumental to understanding the function and use of these molecules. In only a few plants, sterol biosynthesis has been studied using mutants. In non-model species a pharmacological approach is required. However, this relies on only a few inhibitors. Here, we probed a collection of inhibitors of mammalian cholesterol biosynthesis to identify new inhibitors of plant sterol biosynthesis. We show that imidazole-type fungicides, bifonazole, clotrimazole and econazole inhibit the obtusifoliol 14α-demethylase CYP51 in plants. Moreover, we found that the selective estrogen receptor modulator, clomiphene, inhibits sterol biosynthesis in part by inhibiting the plant-specific cyclopropyl-cycloisomerase CPI1. These results demonstrate that rescreening of inhibitors animal sterol biosynthesis is an easy approach for identifying novel inhibitors of plant sterol biosynthesis. These molecules expand the toolkit for studying and manipulating sterol biosynthesis in the plant kingdom.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The selective estrogen receptor modulator clomiphene inhibits sterol biosynthesis in Arabidopsis thaliana.\",\"authors\":\"Qing Wang, Kjell De Vriese, Sandrien Desmet, Ren Wang, Markéta Luklová, Qianqian Liu, Jacob Pollier, Qing Lu, Sarah Schlag, Walter Vetter, Alain Goossens, Eugenia Russinova, Geert Goeminne, Danny Geelen, Tom Beeckman, Steffen Vanneste\",\"doi\":\"10.1093/jxb/erae481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sterols are produced via complex, multistep biosynthetic pathways involving similar enzymatic conversions in plants, animals and fungi, yielding a variety of sterol metabolites with slightly different chemical properties to exert diverse and specific functions. A tremendously diverse landscape of sterols, and sterol-derived compounds, can be found across the plant kingdom, determining a wide spectrum of functions. Resolving the underlying biosynthetic pathways is thus instrumental to understanding the function and use of these molecules. In only a few plants, sterol biosynthesis has been studied using mutants. In non-model species a pharmacological approach is required. However, this relies on only a few inhibitors. Here, we probed a collection of inhibitors of mammalian cholesterol biosynthesis to identify new inhibitors of plant sterol biosynthesis. We show that imidazole-type fungicides, bifonazole, clotrimazole and econazole inhibit the obtusifoliol 14α-demethylase CYP51 in plants. Moreover, we found that the selective estrogen receptor modulator, clomiphene, inhibits sterol biosynthesis in part by inhibiting the plant-specific cyclopropyl-cycloisomerase CPI1. These results demonstrate that rescreening of inhibitors animal sterol biosynthesis is an easy approach for identifying novel inhibitors of plant sterol biosynthesis. These molecules expand the toolkit for studying and manipulating sterol biosynthesis in the plant kingdom.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/erae481\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae481","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The selective estrogen receptor modulator clomiphene inhibits sterol biosynthesis in Arabidopsis thaliana.
Sterols are produced via complex, multistep biosynthetic pathways involving similar enzymatic conversions in plants, animals and fungi, yielding a variety of sterol metabolites with slightly different chemical properties to exert diverse and specific functions. A tremendously diverse landscape of sterols, and sterol-derived compounds, can be found across the plant kingdom, determining a wide spectrum of functions. Resolving the underlying biosynthetic pathways is thus instrumental to understanding the function and use of these molecules. In only a few plants, sterol biosynthesis has been studied using mutants. In non-model species a pharmacological approach is required. However, this relies on only a few inhibitors. Here, we probed a collection of inhibitors of mammalian cholesterol biosynthesis to identify new inhibitors of plant sterol biosynthesis. We show that imidazole-type fungicides, bifonazole, clotrimazole and econazole inhibit the obtusifoliol 14α-demethylase CYP51 in plants. Moreover, we found that the selective estrogen receptor modulator, clomiphene, inhibits sterol biosynthesis in part by inhibiting the plant-specific cyclopropyl-cycloisomerase CPI1. These results demonstrate that rescreening of inhibitors animal sterol biosynthesis is an easy approach for identifying novel inhibitors of plant sterol biosynthesis. These molecules expand the toolkit for studying and manipulating sterol biosynthesis in the plant kingdom.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.