Neenu P Raju, Aamir Ansari, Gandhali Patil, Mohammed Shahique Sheeraz, Sushrut Kukade, Shailendra Kumar, Atya Kapley, Asifa Qureshi
{"title":"通过对废水的监测,了解环境中抗生素耐药性的传播和分布情况。","authors":"Neenu P Raju, Aamir Ansari, Gandhali Patil, Mohammed Shahique Sheeraz, Sushrut Kukade, Shailendra Kumar, Atya Kapley, Asifa Qureshi","doi":"10.1002/jobm.202400330","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance is one of the major health threat for humans, animals, and the environment, according to the World Health Organization (WHO) and the Global Antibiotic-Resistance Surveillance System (GLASS). In the last several years, wastewater/sewage has been identified as potential hotspots for the dissemination of antibiotic resistance and transfer of resistance genes. However, systematic approaches for mapping the antibiotic resistance situation in sewage are limited and underdeveloped. The present review has highlighted all possible perspectives by which the dynamics of ARBs/ARGs in the environment may be tracked, quantified and assessed spatio-temporally through surveillance of wastewater. Moreover, application of advanced methods like wastewater metagenomics for determining the community distribution of resistance at large has appeared to be promising. In addition, monitoring wastewater for antibiotic pollution at various levels, may serve as an early warning system and enable policymakers to take timely measures and build infrastructure to mitigate health crises. Thus, by understanding the alarming presence of antibiotic resistance in wastewater, effective action plans may be developed to address this global health challenge and its associated environmental risks.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400330"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibiotic Resistance Dissemination and Mapping in the Environment Through Surveillance of Wastewater.\",\"authors\":\"Neenu P Raju, Aamir Ansari, Gandhali Patil, Mohammed Shahique Sheeraz, Sushrut Kukade, Shailendra Kumar, Atya Kapley, Asifa Qureshi\",\"doi\":\"10.1002/jobm.202400330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotic resistance is one of the major health threat for humans, animals, and the environment, according to the World Health Organization (WHO) and the Global Antibiotic-Resistance Surveillance System (GLASS). In the last several years, wastewater/sewage has been identified as potential hotspots for the dissemination of antibiotic resistance and transfer of resistance genes. However, systematic approaches for mapping the antibiotic resistance situation in sewage are limited and underdeveloped. The present review has highlighted all possible perspectives by which the dynamics of ARBs/ARGs in the environment may be tracked, quantified and assessed spatio-temporally through surveillance of wastewater. Moreover, application of advanced methods like wastewater metagenomics for determining the community distribution of resistance at large has appeared to be promising. In addition, monitoring wastewater for antibiotic pollution at various levels, may serve as an early warning system and enable policymakers to take timely measures and build infrastructure to mitigate health crises. Thus, by understanding the alarming presence of antibiotic resistance in wastewater, effective action plans may be developed to address this global health challenge and its associated environmental risks.</p>\",\"PeriodicalId\":15101,\"journal\":{\"name\":\"Journal of Basic Microbiology\",\"volume\":\" \",\"pages\":\"e2400330\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Basic Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jobm.202400330\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.202400330","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Antibiotic Resistance Dissemination and Mapping in the Environment Through Surveillance of Wastewater.
Antibiotic resistance is one of the major health threat for humans, animals, and the environment, according to the World Health Organization (WHO) and the Global Antibiotic-Resistance Surveillance System (GLASS). In the last several years, wastewater/sewage has been identified as potential hotspots for the dissemination of antibiotic resistance and transfer of resistance genes. However, systematic approaches for mapping the antibiotic resistance situation in sewage are limited and underdeveloped. The present review has highlighted all possible perspectives by which the dynamics of ARBs/ARGs in the environment may be tracked, quantified and assessed spatio-temporally through surveillance of wastewater. Moreover, application of advanced methods like wastewater metagenomics for determining the community distribution of resistance at large has appeared to be promising. In addition, monitoring wastewater for antibiotic pollution at various levels, may serve as an early warning system and enable policymakers to take timely measures and build infrastructure to mitigate health crises. Thus, by understanding the alarming presence of antibiotic resistance in wastewater, effective action plans may be developed to address this global health challenge and its associated environmental risks.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).