Liam A Tobin, Eradah Abu Sabah, Francois Lebreton, Garry S A Myers, Patrick T McGann, Mehrad Hamidian
{"title":"对在美国军事治疗设施中发现的早期 ST32 鲍曼不动杆菌菌株进行基因组分析,发现了不同的菌系以及与 Tn6168 ampC 转座子起源的联系。","authors":"Liam A Tobin, Eradah Abu Sabah, Francois Lebreton, Garry S A Myers, Patrick T McGann, Mehrad Hamidian","doi":"10.1093/jac/dkae454","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To study the population structure and genomic characteristics, including antimicrobial resistance genes, plasmid types and surface polysaccharide type, of the globally distributed Acinetobacter baumannii belonging to ST32 (Institut Pasteur scheme).</p><p><strong>Methods: </strong>Antibiotic resistance phenotype for 19 antibiotics was determined using Vitek 2. Whole-genome sequencing was performed using the Illumina MiSeq platform. Genomes were assembled using Newbler. Phylogenetic analysis was done by determining the core-genome alignments using Panaroo v1.3, analysed in IQ-Tree2 v2.2.0.3 to construct Maximum Likelihood trees using the RaxML software. Resistance genes and IS were identified using the Abricate programme, and ISFinder databases.</p><p><strong>Results: </strong>One hundred and thirty-three (n = 133) ST32 A. baumannii isolates were analysed in this study. These genomes originated mainly from US military treatment facilities (n = 113), but also included additional publicly available genomes in GenBank (n = 20) recovered from a broad geographic distribution extending to Asia and South America. Phylogenetic analysis of all 133 genomes revealed at least four clades, with over 80 genomes forming a tightly clustered branch, suggesting they are likely to represent outbreak strains. Analysis of the ampC region showed that ST32 strains played a significant role in the formation of the widely distributed ampC transposon, Tn6168, and supplying DNA segments containing an ISAba1-ampC from ST32s via homologous recombination.</p><p><strong>Conclusions: </strong>ST32 strains played a significant role in the evolution of antibiotic resistance in several widely distributed sequence types including ST1 (global clone 1) and ST3.</p>","PeriodicalId":14969,"journal":{"name":"Journal of Antimicrobial Chemotherapy","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic analysis of early ST32 Acinetobacter baumannii strains recovered in US military treatment facilities reveals distinct lineages and links to the origins of the Tn6168 ampC transposon.\",\"authors\":\"Liam A Tobin, Eradah Abu Sabah, Francois Lebreton, Garry S A Myers, Patrick T McGann, Mehrad Hamidian\",\"doi\":\"10.1093/jac/dkae454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To study the population structure and genomic characteristics, including antimicrobial resistance genes, plasmid types and surface polysaccharide type, of the globally distributed Acinetobacter baumannii belonging to ST32 (Institut Pasteur scheme).</p><p><strong>Methods: </strong>Antibiotic resistance phenotype for 19 antibiotics was determined using Vitek 2. Whole-genome sequencing was performed using the Illumina MiSeq platform. Genomes were assembled using Newbler. Phylogenetic analysis was done by determining the core-genome alignments using Panaroo v1.3, analysed in IQ-Tree2 v2.2.0.3 to construct Maximum Likelihood trees using the RaxML software. Resistance genes and IS were identified using the Abricate programme, and ISFinder databases.</p><p><strong>Results: </strong>One hundred and thirty-three (n = 133) ST32 A. baumannii isolates were analysed in this study. These genomes originated mainly from US military treatment facilities (n = 113), but also included additional publicly available genomes in GenBank (n = 20) recovered from a broad geographic distribution extending to Asia and South America. Phylogenetic analysis of all 133 genomes revealed at least four clades, with over 80 genomes forming a tightly clustered branch, suggesting they are likely to represent outbreak strains. Analysis of the ampC region showed that ST32 strains played a significant role in the formation of the widely distributed ampC transposon, Tn6168, and supplying DNA segments containing an ISAba1-ampC from ST32s via homologous recombination.</p><p><strong>Conclusions: </strong>ST32 strains played a significant role in the evolution of antibiotic resistance in several widely distributed sequence types including ST1 (global clone 1) and ST3.</p>\",\"PeriodicalId\":14969,\"journal\":{\"name\":\"Journal of Antimicrobial Chemotherapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Antimicrobial Chemotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jac/dkae454\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antimicrobial Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jac/dkae454","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Genomic analysis of early ST32 Acinetobacter baumannii strains recovered in US military treatment facilities reveals distinct lineages and links to the origins of the Tn6168 ampC transposon.
Objectives: To study the population structure and genomic characteristics, including antimicrobial resistance genes, plasmid types and surface polysaccharide type, of the globally distributed Acinetobacter baumannii belonging to ST32 (Institut Pasteur scheme).
Methods: Antibiotic resistance phenotype for 19 antibiotics was determined using Vitek 2. Whole-genome sequencing was performed using the Illumina MiSeq platform. Genomes were assembled using Newbler. Phylogenetic analysis was done by determining the core-genome alignments using Panaroo v1.3, analysed in IQ-Tree2 v2.2.0.3 to construct Maximum Likelihood trees using the RaxML software. Resistance genes and IS were identified using the Abricate programme, and ISFinder databases.
Results: One hundred and thirty-three (n = 133) ST32 A. baumannii isolates were analysed in this study. These genomes originated mainly from US military treatment facilities (n = 113), but also included additional publicly available genomes in GenBank (n = 20) recovered from a broad geographic distribution extending to Asia and South America. Phylogenetic analysis of all 133 genomes revealed at least four clades, with over 80 genomes forming a tightly clustered branch, suggesting they are likely to represent outbreak strains. Analysis of the ampC region showed that ST32 strains played a significant role in the formation of the widely distributed ampC transposon, Tn6168, and supplying DNA segments containing an ISAba1-ampC from ST32s via homologous recombination.
Conclusions: ST32 strains played a significant role in the evolution of antibiotic resistance in several widely distributed sequence types including ST1 (global clone 1) and ST3.
期刊介绍:
The Journal publishes articles that further knowledge and advance the science and application of antimicrobial chemotherapy with antibiotics and antifungal, antiviral and antiprotozoal agents. The Journal publishes primarily in human medicine, and articles in veterinary medicine likely to have an impact on global health.