Xinda Li, Xueting Qi, Bin Wang, Lei Fu, Xi Chen, Xiaoyi Luo, Xiaoyou Chen, Yu Lu
{"title":"宁替达尼作为宿主导向疗法候选药物在治疗结核病方面的疗效。","authors":"Xinda Li, Xueting Qi, Bin Wang, Lei Fu, Xi Chen, Xiaoyi Luo, Xiaoyou Chen, Yu Lu","doi":"10.1093/jac/dkae429","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The lengthy duration and high frequency of drug resistance associated with currently used antimycobacterial drug treatments have intensified the need for alternative therapies against Mycobacterium tuberculosis, the causative agent of TB.</p><p><strong>Methods: </strong>MICs and intracellular macrophage cfu counts were tested to evaluate the antibacterial activity of nintedanib and pirfenidone against drug-susceptible and -resistant M. tuberculosis. A chronic murine model of pulmonary infection was used to assay the therapeutic efficacy of nintedanib. Macrophage transcriptome deep sequencing, a confocal assay, siRNA knockdown, Western blotting, quantitative RT-PCR and a cfu assay were used to investigate the antibacterial mechanism of nintedanib.</p><p><strong>Results: </strong>The MIC90 of nintedanib against M. tuberculosis standard strain H37Rv was 23.56-40.51 mg/L. TB murine model studies showed that nintedanib, coadministered with isoniazid, rifampicin and pyrazinamide, shortened treatment duration, and ameliorated pulmonary inflammation and fibrosis. In mechanism studies, transcriptome sequencing analysis revealed that nintedanib may eliminate M. tuberculosis through up-regulating macrophage autophagy. Furthermore, inhibition of autophagy by using siRNA targeting ATG5 or the autophagy inhibitor 3-methyladenine almost completely abolished nintedanib-mediated suppression of M. tuberculosis. Nintedanib induced autophagy by the JAK2/STAT3/Beclin1 pathway. When JAK2 or Beclin1 were knocked down through siRNA, nintedanib no longer inhibited M. tuberculosis. JAK2 activator coumermycin A1 and STAT3 agonist colivelin also reversed this phenotype.</p><p><strong>Conclusions: </strong>In vitro activity of nintedanib against drug-susceptible and -resistant M. tuberculosis and efficacy in murine infections warrant the continued clinical evaluation of nintedanib as a new adjuvant therapy for standard treatment of TB.</p>","PeriodicalId":14969,"journal":{"name":"Journal of Antimicrobial Chemotherapy","volume":" ","pages":"452-464"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy of nintedanib as a host-directed therapy candidate in the treatment of tuberculosis.\",\"authors\":\"Xinda Li, Xueting Qi, Bin Wang, Lei Fu, Xi Chen, Xiaoyi Luo, Xiaoyou Chen, Yu Lu\",\"doi\":\"10.1093/jac/dkae429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The lengthy duration and high frequency of drug resistance associated with currently used antimycobacterial drug treatments have intensified the need for alternative therapies against Mycobacterium tuberculosis, the causative agent of TB.</p><p><strong>Methods: </strong>MICs and intracellular macrophage cfu counts were tested to evaluate the antibacterial activity of nintedanib and pirfenidone against drug-susceptible and -resistant M. tuberculosis. A chronic murine model of pulmonary infection was used to assay the therapeutic efficacy of nintedanib. Macrophage transcriptome deep sequencing, a confocal assay, siRNA knockdown, Western blotting, quantitative RT-PCR and a cfu assay were used to investigate the antibacterial mechanism of nintedanib.</p><p><strong>Results: </strong>The MIC90 of nintedanib against M. tuberculosis standard strain H37Rv was 23.56-40.51 mg/L. TB murine model studies showed that nintedanib, coadministered with isoniazid, rifampicin and pyrazinamide, shortened treatment duration, and ameliorated pulmonary inflammation and fibrosis. In mechanism studies, transcriptome sequencing analysis revealed that nintedanib may eliminate M. tuberculosis through up-regulating macrophage autophagy. Furthermore, inhibition of autophagy by using siRNA targeting ATG5 or the autophagy inhibitor 3-methyladenine almost completely abolished nintedanib-mediated suppression of M. tuberculosis. Nintedanib induced autophagy by the JAK2/STAT3/Beclin1 pathway. When JAK2 or Beclin1 were knocked down through siRNA, nintedanib no longer inhibited M. tuberculosis. JAK2 activator coumermycin A1 and STAT3 agonist colivelin also reversed this phenotype.</p><p><strong>Conclusions: </strong>In vitro activity of nintedanib against drug-susceptible and -resistant M. tuberculosis and efficacy in murine infections warrant the continued clinical evaluation of nintedanib as a new adjuvant therapy for standard treatment of TB.</p>\",\"PeriodicalId\":14969,\"journal\":{\"name\":\"Journal of Antimicrobial Chemotherapy\",\"volume\":\" \",\"pages\":\"452-464\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Antimicrobial Chemotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jac/dkae429\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antimicrobial Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jac/dkae429","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Efficacy of nintedanib as a host-directed therapy candidate in the treatment of tuberculosis.
Background: The lengthy duration and high frequency of drug resistance associated with currently used antimycobacterial drug treatments have intensified the need for alternative therapies against Mycobacterium tuberculosis, the causative agent of TB.
Methods: MICs and intracellular macrophage cfu counts were tested to evaluate the antibacterial activity of nintedanib and pirfenidone against drug-susceptible and -resistant M. tuberculosis. A chronic murine model of pulmonary infection was used to assay the therapeutic efficacy of nintedanib. Macrophage transcriptome deep sequencing, a confocal assay, siRNA knockdown, Western blotting, quantitative RT-PCR and a cfu assay were used to investigate the antibacterial mechanism of nintedanib.
Results: The MIC90 of nintedanib against M. tuberculosis standard strain H37Rv was 23.56-40.51 mg/L. TB murine model studies showed that nintedanib, coadministered with isoniazid, rifampicin and pyrazinamide, shortened treatment duration, and ameliorated pulmonary inflammation and fibrosis. In mechanism studies, transcriptome sequencing analysis revealed that nintedanib may eliminate M. tuberculosis through up-regulating macrophage autophagy. Furthermore, inhibition of autophagy by using siRNA targeting ATG5 or the autophagy inhibitor 3-methyladenine almost completely abolished nintedanib-mediated suppression of M. tuberculosis. Nintedanib induced autophagy by the JAK2/STAT3/Beclin1 pathway. When JAK2 or Beclin1 were knocked down through siRNA, nintedanib no longer inhibited M. tuberculosis. JAK2 activator coumermycin A1 and STAT3 agonist colivelin also reversed this phenotype.
Conclusions: In vitro activity of nintedanib against drug-susceptible and -resistant M. tuberculosis and efficacy in murine infections warrant the continued clinical evaluation of nintedanib as a new adjuvant therapy for standard treatment of TB.
期刊介绍:
The Journal publishes articles that further knowledge and advance the science and application of antimicrobial chemotherapy with antibiotics and antifungal, antiviral and antiprotozoal agents. The Journal publishes primarily in human medicine, and articles in veterinary medicine likely to have an impact on global health.