{"title":"碱性蚀刻辅助聚多巴胺涂层可增强三维打印聚乳酸支架上细胞与材料的相互作用。","authors":"Athira Murali, Ramesh Parameswaran","doi":"10.1080/09205063.2024.2436691","DOIUrl":null,"url":null,"abstract":"<p><p>The implant surface chemistry and topography are primary factors regulating the success and survival of bone scaffold. Surface modification is a promising alternative to enhance the biocompatibility and tissue response to augment the osteogenic functionalities of polyesters like PLA. The study employed the synergistic effect of alkaline hydrolysis and polydopamine (PDA) functionalization to enhance the cell-material interactions on 3D printed polylactic acid (PLA) scaffold. Comprehensive characterization of the modified PLA highlights the improvements in the physical, chemical and cell-material interactions upon two-step surface modification. The X-ray photoelectron spectroscopy (XPS) analysis substantiated enhanced PDA deposition with <i>a</i> ∼8.2% increase in surface N composition after surface etching due to homogeneous PDA deposition compared to the non-etched counterpart. The changes in surface chemistry and morphology upon dual surface modification complemented the human osteoblast (HOS) attachment and proliferation, with distinct cell morphology and spreading on PDA coated etched PLA (Et-PLAPDA) scaffolds. Moreover, substantial improvement in osteogenic differentiation of UMR-106 cells on etched PLA (Et-PLA) and Et-PLAPDA highlights the suitability of alkali etching-mediated PDA deposition to improve mineralization on PLA. Overall, the present work opens insights to modify scaffold surface composition, topography, hydrophilicity and roughness to regulate local cell adhesion to improve the osteogenic potential of PLA.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-26"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alkaline etching assisted polydopamine coating for enhanced cell-material interactions on 3D printed polylactic acid scaffolds.\",\"authors\":\"Athira Murali, Ramesh Parameswaran\",\"doi\":\"10.1080/09205063.2024.2436691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The implant surface chemistry and topography are primary factors regulating the success and survival of bone scaffold. Surface modification is a promising alternative to enhance the biocompatibility and tissue response to augment the osteogenic functionalities of polyesters like PLA. The study employed the synergistic effect of alkaline hydrolysis and polydopamine (PDA) functionalization to enhance the cell-material interactions on 3D printed polylactic acid (PLA) scaffold. Comprehensive characterization of the modified PLA highlights the improvements in the physical, chemical and cell-material interactions upon two-step surface modification. The X-ray photoelectron spectroscopy (XPS) analysis substantiated enhanced PDA deposition with <i>a</i> ∼8.2% increase in surface N composition after surface etching due to homogeneous PDA deposition compared to the non-etched counterpart. The changes in surface chemistry and morphology upon dual surface modification complemented the human osteoblast (HOS) attachment and proliferation, with distinct cell morphology and spreading on PDA coated etched PLA (Et-PLAPDA) scaffolds. Moreover, substantial improvement in osteogenic differentiation of UMR-106 cells on etched PLA (Et-PLA) and Et-PLAPDA highlights the suitability of alkali etching-mediated PDA deposition to improve mineralization on PLA. Overall, the present work opens insights to modify scaffold surface composition, topography, hydrophilicity and roughness to regulate local cell adhesion to improve the osteogenic potential of PLA.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-26\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2024.2436691\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2436691","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Alkaline etching assisted polydopamine coating for enhanced cell-material interactions on 3D printed polylactic acid scaffolds.
The implant surface chemistry and topography are primary factors regulating the success and survival of bone scaffold. Surface modification is a promising alternative to enhance the biocompatibility and tissue response to augment the osteogenic functionalities of polyesters like PLA. The study employed the synergistic effect of alkaline hydrolysis and polydopamine (PDA) functionalization to enhance the cell-material interactions on 3D printed polylactic acid (PLA) scaffold. Comprehensive characterization of the modified PLA highlights the improvements in the physical, chemical and cell-material interactions upon two-step surface modification. The X-ray photoelectron spectroscopy (XPS) analysis substantiated enhanced PDA deposition with a ∼8.2% increase in surface N composition after surface etching due to homogeneous PDA deposition compared to the non-etched counterpart. The changes in surface chemistry and morphology upon dual surface modification complemented the human osteoblast (HOS) attachment and proliferation, with distinct cell morphology and spreading on PDA coated etched PLA (Et-PLAPDA) scaffolds. Moreover, substantial improvement in osteogenic differentiation of UMR-106 cells on etched PLA (Et-PLA) and Et-PLAPDA highlights the suitability of alkali etching-mediated PDA deposition to improve mineralization on PLA. Overall, the present work opens insights to modify scaffold surface composition, topography, hydrophilicity and roughness to regulate local cell adhesion to improve the osteogenic potential of PLA.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.