在肌营养不良症 1 型患者衍生的 iPSCs 中发现 ZNF850 是一种新型 CTG 重复扩增相关基因。

IF 3.1 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Masayoshi Kamon, Shuji Wakatsuki, Masayuki Nakamori, Masanori P Takahashi, Madoka Mori-Yoshimura, Hirofumi Komaki, Toshiyuki Araki
{"title":"在肌营养不良症 1 型患者衍生的 iPSCs 中发现 ZNF850 是一种新型 CTG 重复扩增相关基因。","authors":"Masayoshi Kamon, Shuji Wakatsuki, Masayuki Nakamori, Masanori P Takahashi, Madoka Mori-Yoshimura, Hirofumi Komaki, Toshiyuki Araki","doi":"10.1093/hmg/ddae186","DOIUrl":null,"url":null,"abstract":"<p><p>Myotonic dystrophy type 1 (DM1) is a dominantly inherited multi-system disease caused by expanded CTG repeats in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Similar to other repeat disorders, the expanded trinucleotide repeat is unstable and demonstrates a tendency to increase repeat size with age in affected tissues. DNA mismatch repair system is implicated in somatic instability. It has been demonstrated that DM1 patient-derived induced pluripotent stem cells (DM1-iPSCs) show repeat instability, in which involvement of mismatch repair proteins has been suggested. Here we identified ZNF850 as a novel CTG repeat expansion-related molecule in DM1-iPSCs. ZNF850 was downregulated in a DM1-iPSC clone whose CTG repeat is exceptionally stable. We found that RNAi-mediated ZNF850 downregulation in DM1-iPSCs significantly reduced the repeat expansion and resulting instability. In adult skeletal muscle tissue of DM1 patients, ZNF850 expression levels were positively correlated with the repeat size. Furthermore, we found that ZNF850 protein can bind to the expanded CTG repeat sequence, and is located in proximity to MutSβ components. These results suggest that ZNF850 might play a role in repeat instability in DM1 by recruiting MutSβ to the repeat sequence.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of ZNF850 as a novel CTG repeat expansion-related gene in myotonic dystrophy type 1 patient-derived iPSCs.\",\"authors\":\"Masayoshi Kamon, Shuji Wakatsuki, Masayuki Nakamori, Masanori P Takahashi, Madoka Mori-Yoshimura, Hirofumi Komaki, Toshiyuki Araki\",\"doi\":\"10.1093/hmg/ddae186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myotonic dystrophy type 1 (DM1) is a dominantly inherited multi-system disease caused by expanded CTG repeats in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Similar to other repeat disorders, the expanded trinucleotide repeat is unstable and demonstrates a tendency to increase repeat size with age in affected tissues. DNA mismatch repair system is implicated in somatic instability. It has been demonstrated that DM1 patient-derived induced pluripotent stem cells (DM1-iPSCs) show repeat instability, in which involvement of mismatch repair proteins has been suggested. Here we identified ZNF850 as a novel CTG repeat expansion-related molecule in DM1-iPSCs. ZNF850 was downregulated in a DM1-iPSC clone whose CTG repeat is exceptionally stable. We found that RNAi-mediated ZNF850 downregulation in DM1-iPSCs significantly reduced the repeat expansion and resulting instability. In adult skeletal muscle tissue of DM1 patients, ZNF850 expression levels were positively correlated with the repeat size. Furthermore, we found that ZNF850 protein can bind to the expanded CTG repeat sequence, and is located in proximity to MutSβ components. These results suggest that ZNF850 might play a role in repeat instability in DM1 by recruiting MutSβ to the repeat sequence.</p>\",\"PeriodicalId\":13070,\"journal\":{\"name\":\"Human molecular genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human molecular genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/hmg/ddae186\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae186","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肌营养不良症 1 型(DM1)是一种显性遗传的多系统疾病,由肌营养不良症蛋白激酶(DMPK)基因 3' 非翻译区中的扩展 CTG 重复序列引起。与其他重复序列疾病类似,扩展的三核苷酸重复序列不稳定,在受影响的组织中,随着年龄的增长,重复序列的大小有增加的趋势。DNA 错配修复系统与体细胞不稳定性有关。有研究表明,DM1 患者衍生的诱导多能干细胞(DM1-iPSCs)表现出重复不稳定性,错配修复蛋白参与了其中。在这里,我们发现ZNF850是DM1-iPSCs中一种新型的CTG重复扩增相关分子。在一个 CTG 重复异常稳定的 DM1-iPSC 克隆中,ZNF850 被下调。我们发现,RNAi介导的ZNF850在DM1-iPSCs中的下调显著减少了重复扩展和由此导致的不稳定性。在 DM1 患者的成年骨骼肌组织中,ZNF850 的表达水平与重复大小呈正相关。此外,我们还发现 ZNF850 蛋白能与扩展的 CTG 重复序列结合,并位于 MutSβ 成分附近。这些结果表明,ZNF850可能通过将MutSβ招募到重复序列上而在DM1的重复不稳定性中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of ZNF850 as a novel CTG repeat expansion-related gene in myotonic dystrophy type 1 patient-derived iPSCs.

Myotonic dystrophy type 1 (DM1) is a dominantly inherited multi-system disease caused by expanded CTG repeats in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Similar to other repeat disorders, the expanded trinucleotide repeat is unstable and demonstrates a tendency to increase repeat size with age in affected tissues. DNA mismatch repair system is implicated in somatic instability. It has been demonstrated that DM1 patient-derived induced pluripotent stem cells (DM1-iPSCs) show repeat instability, in which involvement of mismatch repair proteins has been suggested. Here we identified ZNF850 as a novel CTG repeat expansion-related molecule in DM1-iPSCs. ZNF850 was downregulated in a DM1-iPSC clone whose CTG repeat is exceptionally stable. We found that RNAi-mediated ZNF850 downregulation in DM1-iPSCs significantly reduced the repeat expansion and resulting instability. In adult skeletal muscle tissue of DM1 patients, ZNF850 expression levels were positively correlated with the repeat size. Furthermore, we found that ZNF850 protein can bind to the expanded CTG repeat sequence, and is located in proximity to MutSβ components. These results suggest that ZNF850 might play a role in repeat instability in DM1 by recruiting MutSβ to the repeat sequence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信