Po Wang, Liya Pan, Qianqian Liu, Yan Huang, Youlian Tang, Baoquan Lin, Yayun Liao, Hanwen Luo, Xiaoyan Meng
{"title":"Pinocembrin 激活 DPP9 可抑制 NLRP1 炎症小体的激活,从而缓解脑缺血/再灌注引起的肺和肠道损伤。","authors":"Po Wang, Liya Pan, Qianqian Liu, Yan Huang, Youlian Tang, Baoquan Lin, Yayun Liao, Hanwen Luo, Xiaoyan Meng","doi":"10.1007/s12026-024-09580-8","DOIUrl":null,"url":null,"abstract":"<p><p>After stroke, there is a high incidence of acute lung injury and impairment of intestinal barrier function. In this research, the effects of pinocembrin on organ injuries induced by cerebral ischemia-reperfusion were investigated in mice with middle cerebral artery occlusion/reperfusion (MCAO/R) and further explored the possible mechanism. The potential targets of pinocembrin against MCAO/R were obtained by online tools. An MCAO/R model was developed in C57BL/6 J mice, in combination with pinocembrin administration and lentivirus-mediated gene intervention. Pinocembrin alleviated neurological impairment, reduced the volume of cerebral infarction, attenuated pathological injury of brain tissues in MCAO/R-induced mice by promoting the expression of dipeptidyl peptidase 9 (DPP9), and blocked the nucleotide-binding domain leucine-rich repeat pyrin domain containing 1 (NLRP1) inflammasome activation. Moreover, pinocembrin attenuated the infiltration of inflammatory cells in the lungs and intestinal histopathological injury induced by MCAO/R. The above effects of pinocembrin were reversed by knocking down DPP9. These findings indicated that pinocembrin inhibits NLRP1 inflammasome activation by inducing DPP9, thus mitigating brain, lung, and intestinal injuries induced by MCAO/R.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":"73 1","pages":"13"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pinocembrin activation of DPP9 inhibits NLRP1 inflammasome activation to alleviate cerebral ischemia/reperfusion-induced lung and intestinal injury.\",\"authors\":\"Po Wang, Liya Pan, Qianqian Liu, Yan Huang, Youlian Tang, Baoquan Lin, Yayun Liao, Hanwen Luo, Xiaoyan Meng\",\"doi\":\"10.1007/s12026-024-09580-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>After stroke, there is a high incidence of acute lung injury and impairment of intestinal barrier function. In this research, the effects of pinocembrin on organ injuries induced by cerebral ischemia-reperfusion were investigated in mice with middle cerebral artery occlusion/reperfusion (MCAO/R) and further explored the possible mechanism. The potential targets of pinocembrin against MCAO/R were obtained by online tools. An MCAO/R model was developed in C57BL/6 J mice, in combination with pinocembrin administration and lentivirus-mediated gene intervention. Pinocembrin alleviated neurological impairment, reduced the volume of cerebral infarction, attenuated pathological injury of brain tissues in MCAO/R-induced mice by promoting the expression of dipeptidyl peptidase 9 (DPP9), and blocked the nucleotide-binding domain leucine-rich repeat pyrin domain containing 1 (NLRP1) inflammasome activation. Moreover, pinocembrin attenuated the infiltration of inflammatory cells in the lungs and intestinal histopathological injury induced by MCAO/R. The above effects of pinocembrin were reversed by knocking down DPP9. These findings indicated that pinocembrin inhibits NLRP1 inflammasome activation by inducing DPP9, thus mitigating brain, lung, and intestinal injuries induced by MCAO/R.</p>\",\"PeriodicalId\":13389,\"journal\":{\"name\":\"Immunologic Research\",\"volume\":\"73 1\",\"pages\":\"13\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunologic Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12026-024-09580-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunologic Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12026-024-09580-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Pinocembrin activation of DPP9 inhibits NLRP1 inflammasome activation to alleviate cerebral ischemia/reperfusion-induced lung and intestinal injury.
After stroke, there is a high incidence of acute lung injury and impairment of intestinal barrier function. In this research, the effects of pinocembrin on organ injuries induced by cerebral ischemia-reperfusion were investigated in mice with middle cerebral artery occlusion/reperfusion (MCAO/R) and further explored the possible mechanism. The potential targets of pinocembrin against MCAO/R were obtained by online tools. An MCAO/R model was developed in C57BL/6 J mice, in combination with pinocembrin administration and lentivirus-mediated gene intervention. Pinocembrin alleviated neurological impairment, reduced the volume of cerebral infarction, attenuated pathological injury of brain tissues in MCAO/R-induced mice by promoting the expression of dipeptidyl peptidase 9 (DPP9), and blocked the nucleotide-binding domain leucine-rich repeat pyrin domain containing 1 (NLRP1) inflammasome activation. Moreover, pinocembrin attenuated the infiltration of inflammatory cells in the lungs and intestinal histopathological injury induced by MCAO/R. The above effects of pinocembrin were reversed by knocking down DPP9. These findings indicated that pinocembrin inhibits NLRP1 inflammasome activation by inducing DPP9, thus mitigating brain, lung, and intestinal injuries induced by MCAO/R.
期刊介绍:
IMMUNOLOGIC RESEARCH represents a unique medium for the presentation, interpretation, and clarification of complex scientific data. Information is presented in the form of interpretive synthesis reviews, original research articles, symposia, editorials, and theoretical essays. The scope of coverage extends to cellular immunology, immunogenetics, molecular and structural immunology, immunoregulation and autoimmunity, immunopathology, tumor immunology, host defense and microbial immunity, including viral immunology, immunohematology, mucosal immunity, complement, transplantation immunology, clinical immunology, neuroimmunology, immunoendocrinology, immunotoxicology, translational immunology, and history of immunology.