欧洲最具破坏性森林害虫反转多态性的复杂基因组图谱。

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY
Anastasiia Mykhailenko, Piotr Zieliński, Aleksandra Bednarz, Fredrik Schlyter, Martin N Andersson, Bernardo Antunes, Zbigniew Borowski, Paal Krokene, Markus Melin, Julia Morales-García, Jörg Müller, Zuzanna Nowak, Martin Schebeck, Christian Stauffer, Heli Viiri, Julia Zaborowska, Wiesław Babik, Krystyna Nadachowska-Brzyska
{"title":"欧洲最具破坏性森林害虫反转多态性的复杂基因组图谱。","authors":"Anastasiia Mykhailenko, Piotr Zieliński, Aleksandra Bednarz, Fredrik Schlyter, Martin N Andersson, Bernardo Antunes, Zbigniew Borowski, Paal Krokene, Markus Melin, Julia Morales-García, Jörg Müller, Zuzanna Nowak, Martin Schebeck, Christian Stauffer, Heli Viiri, Julia Zaborowska, Wiesław Babik, Krystyna Nadachowska-Brzyska","doi":"10.1093/gbe/evae263","DOIUrl":null,"url":null,"abstract":"<p><p>In many species, polymorphic genomic inversions underlie complex phenotypic polymorphisms and facilitate local adaptation in the face of gene flow. Multiple polymorphic inversions can co-occur in a genome, but the prevalence, evolutionary significance, and limits to complexity of genomic inversion landscapes remain poorly understood. Here, we examine genome-wide genetic variation in one of Europe's most destructive forest pests, the spruce bark beetle Ips typographus, scan for polymorphic inversions, and test whether inversions are associated with key traits in this species. We analyzed 240 individuals from 18 populations across the species' European range and, using a whole-genome resequencing approach, identified 27 polymorphic inversions covering ∼28% of the genome. The inversions vary in size and in levels of intra-inversion recombination, are highly polymorphic across the species range, and often overlap, forming a complex genomic architecture. We found no support for mechanisms such as directional selection, overdominance, and associative overdominance that are often invoked to explain the presence of large inversion polymorphisms in the genome. This suggests that inversions are either neutral or maintained by the combined action of multiple evolutionary forces. We also found that inversions are enriched in odorant receptor genes encoding elements of recognition pathways for host plants, mates, and symbiotic fungi. Our results indicate that the genome of this major forest pest of growing social, political, and economic importance harbors one of the most complex inversion landscapes described to date and raise questions about the limits of intraspecific genomic architecture complexity.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652730/pdf/","citationCount":"0","resultStr":"{\"title\":\"Complex Genomic Landscape of Inversion Polymorphism in Europe's Most Destructive Forest Pest.\",\"authors\":\"Anastasiia Mykhailenko, Piotr Zieliński, Aleksandra Bednarz, Fredrik Schlyter, Martin N Andersson, Bernardo Antunes, Zbigniew Borowski, Paal Krokene, Markus Melin, Julia Morales-García, Jörg Müller, Zuzanna Nowak, Martin Schebeck, Christian Stauffer, Heli Viiri, Julia Zaborowska, Wiesław Babik, Krystyna Nadachowska-Brzyska\",\"doi\":\"10.1093/gbe/evae263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In many species, polymorphic genomic inversions underlie complex phenotypic polymorphisms and facilitate local adaptation in the face of gene flow. Multiple polymorphic inversions can co-occur in a genome, but the prevalence, evolutionary significance, and limits to complexity of genomic inversion landscapes remain poorly understood. Here, we examine genome-wide genetic variation in one of Europe's most destructive forest pests, the spruce bark beetle Ips typographus, scan for polymorphic inversions, and test whether inversions are associated with key traits in this species. We analyzed 240 individuals from 18 populations across the species' European range and, using a whole-genome resequencing approach, identified 27 polymorphic inversions covering ∼28% of the genome. The inversions vary in size and in levels of intra-inversion recombination, are highly polymorphic across the species range, and often overlap, forming a complex genomic architecture. We found no support for mechanisms such as directional selection, overdominance, and associative overdominance that are often invoked to explain the presence of large inversion polymorphisms in the genome. This suggests that inversions are either neutral or maintained by the combined action of multiple evolutionary forces. We also found that inversions are enriched in odorant receptor genes encoding elements of recognition pathways for host plants, mates, and symbiotic fungi. Our results indicate that the genome of this major forest pest of growing social, political, and economic importance harbors one of the most complex inversion landscapes described to date and raise questions about the limits of intraspecific genomic architecture complexity.</p>\",\"PeriodicalId\":12779,\"journal\":{\"name\":\"Genome Biology and Evolution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652730/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gbe/evae263\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae263","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在许多物种中,多态基因组倒位是复杂表型多态性的基础,有助于在基因流动中实现局部适应。一个基因组中可能同时存在多个多态倒位,但人们对基因组倒位景观的普遍性、进化意义和复杂性的限制仍然知之甚少。在这里,我们研究了欧洲最具破坏性的森林害虫之一云杉树皮甲虫 Ips typographus 的全基因组遗传变异,扫描了多态倒位,并检验了倒位是否与该物种的关键性状相关。我们分析了该物种在欧洲分布的 18 个种群中的 240 个个体,并采用全基因组重测序方法确定了 27 个多态性倒位,覆盖了约 28% 的基因组。这些倒位的大小和倒位内重组的程度各不相同,在整个物种范围内高度多态,而且经常重叠,形成了复杂的基因组结构。我们发现,定向选择、过度优势和关联过度优势等机制并不支持基因组中存在大量倒位多态性的原因。这表明,倒位要么是中性的,要么是在多种进化力量的共同作用下维持的。我们还发现,反转富集在编码识别寄主植物、配偶和共生真菌途径的气味受体基因中。我们的研究结果表明,这种在社会、政治和经济方面日益重要的主要森林害虫的基因组具有迄今为止所描述的最复杂的反转图谱之一,并提出了关于种内基因组结构复杂性极限的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex Genomic Landscape of Inversion Polymorphism in Europe's Most Destructive Forest Pest.

In many species, polymorphic genomic inversions underlie complex phenotypic polymorphisms and facilitate local adaptation in the face of gene flow. Multiple polymorphic inversions can co-occur in a genome, but the prevalence, evolutionary significance, and limits to complexity of genomic inversion landscapes remain poorly understood. Here, we examine genome-wide genetic variation in one of Europe's most destructive forest pests, the spruce bark beetle Ips typographus, scan for polymorphic inversions, and test whether inversions are associated with key traits in this species. We analyzed 240 individuals from 18 populations across the species' European range and, using a whole-genome resequencing approach, identified 27 polymorphic inversions covering ∼28% of the genome. The inversions vary in size and in levels of intra-inversion recombination, are highly polymorphic across the species range, and often overlap, forming a complex genomic architecture. We found no support for mechanisms such as directional selection, overdominance, and associative overdominance that are often invoked to explain the presence of large inversion polymorphisms in the genome. This suggests that inversions are either neutral or maintained by the combined action of multiple evolutionary forces. We also found that inversions are enriched in odorant receptor genes encoding elements of recognition pathways for host plants, mates, and symbiotic fungi. Our results indicate that the genome of this major forest pest of growing social, political, and economic importance harbors one of the most complex inversion landscapes described to date and raise questions about the limits of intraspecific genomic architecture complexity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信