Rita S Patarrão, Maria João Meneses, Hilda E Ghadieh, Laura Herrera, Sérgio Duarte, Rogério T Ribeiro, João F Raposo, Verena Schmitt, Bernhard B Singer, Amalia Gastaldelli, Carlos Penha-Gonçalves, Sonia M Najjar, M Paula Macedo
{"title":"循环中的 CEACAM1 在胰岛素清除和疾病进展中的作用:来自葡萄牙 PREVADIAB2 研究的证据。","authors":"Rita S Patarrão, Maria João Meneses, Hilda E Ghadieh, Laura Herrera, Sérgio Duarte, Rogério T Ribeiro, João F Raposo, Verena Schmitt, Bernhard B Singer, Amalia Gastaldelli, Carlos Penha-Gonçalves, Sonia M Najjar, M Paula Macedo","doi":"10.1111/eci.14344","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Type 2 diabetes (T2DM) and obesity are characterized by altered insulin metabolism and action. Reduced hepatic insulin clearance is increasingly recognized as a key contributor to hyperinsulinemia and insulin resistance. CEACAM1 promotes hepatic insulin clearance, and its loss in hepatocytes is associated with reduced insulin clearance in mice and men. This study examines whether CEACAM1 circulating levels reflect compromised insulin metabolism and resistance in the PREVADIAB2 cohort.</p><p><strong>Methods: </strong>A total of 1019 individuals from the PREVADIAB2 cohort were evaluated for diabetes by 75 g-OGTT and classified according to WHO 2019 criteria. CEACAM1 circulating levels were measured by ELISA, and insulin metabolism parameters were calculated. Hierarchical clustering of insulin metabolic indices and CEACAM1 levels was performed. Statistical significance was assessed using Kruskal-Wallis and Wilcoxon-Mann-Whitney tests.</p><p><strong>Results: </strong>BMI, insulin resistance (HOMA-IR), and hepatic steatosis progressively increased with disease severity. Insulin secretion rose and its clearance declined in parallel to circulating CEACAM1 levels in prediabetes and T2DM, indicating compensatory hyperinsulinemia. Hierarchical metabolic clustering identified four clusters with distinct patterns and further showed that insulin clearance positively correlated with circulating CEACAM1, especially in individuals with normoglycemia, lower obesity and hepatic steatosis. This suggests that circulating CEACAM1 can reflect the status of hepatic insulin clearance.</p><p><strong>Conclusions: </strong>This study demonstrates a progressive increase in insulin resistance and hyperinsulinemia in parallel to elevated BMI and hepatic steatosis prevalence, accompanied by declining circulating CEACAM1 levels. Cluster analysis further linked reduced insulin clearance to lower circulating CEACAM1 levels, suggesting its potential usefulness as a biomarker for metabolic disease progression.</p>","PeriodicalId":12013,"journal":{"name":"European Journal of Clinical Investigation","volume":"54 Suppl 2 ","pages":"e14344"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646293/pdf/","citationCount":"0","resultStr":"{\"title\":\"Insights into circulating CEACAM1 in insulin clearance and disease progression: Evidence from the Portuguese PREVADIAB2 study.\",\"authors\":\"Rita S Patarrão, Maria João Meneses, Hilda E Ghadieh, Laura Herrera, Sérgio Duarte, Rogério T Ribeiro, João F Raposo, Verena Schmitt, Bernhard B Singer, Amalia Gastaldelli, Carlos Penha-Gonçalves, Sonia M Najjar, M Paula Macedo\",\"doi\":\"10.1111/eci.14344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Type 2 diabetes (T2DM) and obesity are characterized by altered insulin metabolism and action. Reduced hepatic insulin clearance is increasingly recognized as a key contributor to hyperinsulinemia and insulin resistance. CEACAM1 promotes hepatic insulin clearance, and its loss in hepatocytes is associated with reduced insulin clearance in mice and men. This study examines whether CEACAM1 circulating levels reflect compromised insulin metabolism and resistance in the PREVADIAB2 cohort.</p><p><strong>Methods: </strong>A total of 1019 individuals from the PREVADIAB2 cohort were evaluated for diabetes by 75 g-OGTT and classified according to WHO 2019 criteria. CEACAM1 circulating levels were measured by ELISA, and insulin metabolism parameters were calculated. Hierarchical clustering of insulin metabolic indices and CEACAM1 levels was performed. Statistical significance was assessed using Kruskal-Wallis and Wilcoxon-Mann-Whitney tests.</p><p><strong>Results: </strong>BMI, insulin resistance (HOMA-IR), and hepatic steatosis progressively increased with disease severity. Insulin secretion rose and its clearance declined in parallel to circulating CEACAM1 levels in prediabetes and T2DM, indicating compensatory hyperinsulinemia. Hierarchical metabolic clustering identified four clusters with distinct patterns and further showed that insulin clearance positively correlated with circulating CEACAM1, especially in individuals with normoglycemia, lower obesity and hepatic steatosis. This suggests that circulating CEACAM1 can reflect the status of hepatic insulin clearance.</p><p><strong>Conclusions: </strong>This study demonstrates a progressive increase in insulin resistance and hyperinsulinemia in parallel to elevated BMI and hepatic steatosis prevalence, accompanied by declining circulating CEACAM1 levels. Cluster analysis further linked reduced insulin clearance to lower circulating CEACAM1 levels, suggesting its potential usefulness as a biomarker for metabolic disease progression.</p>\",\"PeriodicalId\":12013,\"journal\":{\"name\":\"European Journal of Clinical Investigation\",\"volume\":\"54 Suppl 2 \",\"pages\":\"e14344\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646293/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/eci.14344\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/eci.14344","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Insights into circulating CEACAM1 in insulin clearance and disease progression: Evidence from the Portuguese PREVADIAB2 study.
Background: Type 2 diabetes (T2DM) and obesity are characterized by altered insulin metabolism and action. Reduced hepatic insulin clearance is increasingly recognized as a key contributor to hyperinsulinemia and insulin resistance. CEACAM1 promotes hepatic insulin clearance, and its loss in hepatocytes is associated with reduced insulin clearance in mice and men. This study examines whether CEACAM1 circulating levels reflect compromised insulin metabolism and resistance in the PREVADIAB2 cohort.
Methods: A total of 1019 individuals from the PREVADIAB2 cohort were evaluated for diabetes by 75 g-OGTT and classified according to WHO 2019 criteria. CEACAM1 circulating levels were measured by ELISA, and insulin metabolism parameters were calculated. Hierarchical clustering of insulin metabolic indices and CEACAM1 levels was performed. Statistical significance was assessed using Kruskal-Wallis and Wilcoxon-Mann-Whitney tests.
Results: BMI, insulin resistance (HOMA-IR), and hepatic steatosis progressively increased with disease severity. Insulin secretion rose and its clearance declined in parallel to circulating CEACAM1 levels in prediabetes and T2DM, indicating compensatory hyperinsulinemia. Hierarchical metabolic clustering identified four clusters with distinct patterns and further showed that insulin clearance positively correlated with circulating CEACAM1, especially in individuals with normoglycemia, lower obesity and hepatic steatosis. This suggests that circulating CEACAM1 can reflect the status of hepatic insulin clearance.
Conclusions: This study demonstrates a progressive increase in insulin resistance and hyperinsulinemia in parallel to elevated BMI and hepatic steatosis prevalence, accompanied by declining circulating CEACAM1 levels. Cluster analysis further linked reduced insulin clearance to lower circulating CEACAM1 levels, suggesting its potential usefulness as a biomarker for metabolic disease progression.
期刊介绍:
EJCI considers any original contribution from the most sophisticated basic molecular sciences to applied clinical and translational research and evidence-based medicine across a broad range of subspecialties. The EJCI publishes reports of high-quality research that pertain to the genetic, molecular, cellular, or physiological basis of human biology and disease, as well as research that addresses prevalence, diagnosis, course, treatment, and prevention of disease. We are primarily interested in studies directly pertinent to humans, but submission of robust in vitro and animal work is also encouraged. Interdisciplinary work and research using innovative methods and combinations of laboratory, clinical, and epidemiological methodologies and techniques is of great interest to the journal. Several categories of manuscripts (for detailed description see below) are considered: editorials, original articles (also including randomized clinical trials, systematic reviews and meta-analyses), reviews (narrative reviews), opinion articles (including debates, perspectives and commentaries); and letters to the Editor.