Tisa Rani Saha, Md. Ahsan Habib, S. M. Imran Ali, Jannatul Naime, Md. Mahiuddin, Shaheen M. Sarkar, Md. Abu Rayhan Khan, Kaykobad Md Rezaul Karim
{"title":"使用 PANI-CuFe2O4 纳米复合材料光催化降解亚甲基蓝染料","authors":"Tisa Rani Saha, Md. Ahsan Habib, S. M. Imran Ali, Jannatul Naime, Md. Mahiuddin, Shaheen M. Sarkar, Md. Abu Rayhan Khan, Kaykobad Md Rezaul Karim","doi":"10.1002/gch2.202400179","DOIUrl":null,"url":null,"abstract":"<p>The present perspective accentuates the synthesis of PANI-CuFe<sub>2</sub>O<sub>4</sub> (PCF) nanocomposite, and photocatalytic degradation of methylene blue (MB) dye using a synthesized composite. The stable PCF is confirmed and characterized by analytical techniques, namely, fourier transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM) analysis. The synthesized PCF nanocomposites are significantly crystalline in nature, having magnetic saturation of 10.47 emu g<sup>−1</sup>, and monoclinic crystalline structure as well as the size of nanocomposite is 39.54 nm verified by XRD pattern. SEM analysis revealed a regular porous and rough surface of nanocomposite. In addition, the nanocomposite divulged the remarkable efficient elimination of MB dye with maximum removal of 96% with good fitting of Langmuir isotherm, indication of monolayer formation on the catalyst surface through the interaction between nanocomposite and dye molecule. The adsorption kinetics bolstered the pseudo-second-order kinetic model, suggesting the adsorption process proceeded by chemisorption. The most notable feature of the nanocomposite is the reusability and good stability after several cycles, maintaining 90% after five cycles.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637778/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic Degradation of Methylene Blue Dye using PANI-CuFe2O4 Nano Composite\",\"authors\":\"Tisa Rani Saha, Md. Ahsan Habib, S. M. Imran Ali, Jannatul Naime, Md. Mahiuddin, Shaheen M. Sarkar, Md. Abu Rayhan Khan, Kaykobad Md Rezaul Karim\",\"doi\":\"10.1002/gch2.202400179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present perspective accentuates the synthesis of PANI-CuFe<sub>2</sub>O<sub>4</sub> (PCF) nanocomposite, and photocatalytic degradation of methylene blue (MB) dye using a synthesized composite. The stable PCF is confirmed and characterized by analytical techniques, namely, fourier transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM) analysis. The synthesized PCF nanocomposites are significantly crystalline in nature, having magnetic saturation of 10.47 emu g<sup>−1</sup>, and monoclinic crystalline structure as well as the size of nanocomposite is 39.54 nm verified by XRD pattern. SEM analysis revealed a regular porous and rough surface of nanocomposite. In addition, the nanocomposite divulged the remarkable efficient elimination of MB dye with maximum removal of 96% with good fitting of Langmuir isotherm, indication of monolayer formation on the catalyst surface through the interaction between nanocomposite and dye molecule. The adsorption kinetics bolstered the pseudo-second-order kinetic model, suggesting the adsorption process proceeded by chemisorption. The most notable feature of the nanocomposite is the reusability and good stability after several cycles, maintaining 90% after five cycles.</p>\",\"PeriodicalId\":12646,\"journal\":{\"name\":\"Global Challenges\",\"volume\":\"8 12\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637778/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Challenges\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202400179\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202400179","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Photocatalytic Degradation of Methylene Blue Dye using PANI-CuFe2O4 Nano Composite
The present perspective accentuates the synthesis of PANI-CuFe2O4 (PCF) nanocomposite, and photocatalytic degradation of methylene blue (MB) dye using a synthesized composite. The stable PCF is confirmed and characterized by analytical techniques, namely, fourier transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM) analysis. The synthesized PCF nanocomposites are significantly crystalline in nature, having magnetic saturation of 10.47 emu g−1, and monoclinic crystalline structure as well as the size of nanocomposite is 39.54 nm verified by XRD pattern. SEM analysis revealed a regular porous and rough surface of nanocomposite. In addition, the nanocomposite divulged the remarkable efficient elimination of MB dye with maximum removal of 96% with good fitting of Langmuir isotherm, indication of monolayer formation on the catalyst surface through the interaction between nanocomposite and dye molecule. The adsorption kinetics bolstered the pseudo-second-order kinetic model, suggesting the adsorption process proceeded by chemisorption. The most notable feature of the nanocomposite is the reusability and good stability after several cycles, maintaining 90% after five cycles.