利用基于地理信息系统的机器学习集合模型评估埃塞俄比亚吉达博流域的地下水潜力区。

IF 4.4 4区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mussa Muhaba Mussa, Tarun Kumar Lohani, Abunu Atlabachew Eshete
{"title":"利用基于地理信息系统的机器学习集合模型评估埃塞俄比亚吉达博流域的地下水潜力区。","authors":"Mussa Muhaba Mussa,&nbsp;Tarun Kumar Lohani,&nbsp;Abunu Atlabachew Eshete","doi":"10.1002/gch2.202400137","DOIUrl":null,"url":null,"abstract":"<p>The main objective of this study is to map and evaluate groundwater potential zones (GWPZs) using advanced ensemble machine learning (ML) models, notably Random Forest (RF) and Support Vector Machine (SVM). GWPZs are identified by considering essential factors such as geology, drainage density, slope, land use/land cover (LULC), rainfall, soil, and lineament density. This is combined with datasets used for training and validating the RF and SVM models, which consisted of 75 potential sites (boreholes and springs), 22 non-potential sites (bare lands and settlement areas), and 20 potential sites (water bodies). Each dataset is randomly partitioned into two sets: training (70%) and validation (30%). The model's performance is evaluated using the area under the receiver operating characteristic curve (AUC-ROC). The AUC of the RF model is 0.91, compared to 0.88 for the SVM model. Both models classified GWPZs effectively, but the RF model performed slightly better. The classified GWPZ map shows that high GWPZs are typically located within water bodies, natural springs, low-lying regions, and forested areas. In contrast, low GWPZs are primarily found in shrubland and grassland areas. This study is vital for decision-makers as it promotes sustainable groundwater use and ensures water security in the studied area.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637779/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Groundwater Potential Zones Using GIS-Based Machine Learning Ensemble Models in the Gidabo Watershed, Ethiopia\",\"authors\":\"Mussa Muhaba Mussa,&nbsp;Tarun Kumar Lohani,&nbsp;Abunu Atlabachew Eshete\",\"doi\":\"10.1002/gch2.202400137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The main objective of this study is to map and evaluate groundwater potential zones (GWPZs) using advanced ensemble machine learning (ML) models, notably Random Forest (RF) and Support Vector Machine (SVM). GWPZs are identified by considering essential factors such as geology, drainage density, slope, land use/land cover (LULC), rainfall, soil, and lineament density. This is combined with datasets used for training and validating the RF and SVM models, which consisted of 75 potential sites (boreholes and springs), 22 non-potential sites (bare lands and settlement areas), and 20 potential sites (water bodies). Each dataset is randomly partitioned into two sets: training (70%) and validation (30%). The model's performance is evaluated using the area under the receiver operating characteristic curve (AUC-ROC). The AUC of the RF model is 0.91, compared to 0.88 for the SVM model. Both models classified GWPZs effectively, but the RF model performed slightly better. The classified GWPZ map shows that high GWPZs are typically located within water bodies, natural springs, low-lying regions, and forested areas. In contrast, low GWPZs are primarily found in shrubland and grassland areas. This study is vital for decision-makers as it promotes sustainable groundwater use and ensures water security in the studied area.</p>\",\"PeriodicalId\":12646,\"journal\":{\"name\":\"Global Challenges\",\"volume\":\"8 12\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637779/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Challenges\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202400137\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202400137","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evaluation of Groundwater Potential Zones Using GIS-Based Machine Learning Ensemble Models in the Gidabo Watershed, Ethiopia

Evaluation of Groundwater Potential Zones Using GIS-Based Machine Learning Ensemble Models in the Gidabo Watershed, Ethiopia

The main objective of this study is to map and evaluate groundwater potential zones (GWPZs) using advanced ensemble machine learning (ML) models, notably Random Forest (RF) and Support Vector Machine (SVM). GWPZs are identified by considering essential factors such as geology, drainage density, slope, land use/land cover (LULC), rainfall, soil, and lineament density. This is combined with datasets used for training and validating the RF and SVM models, which consisted of 75 potential sites (boreholes and springs), 22 non-potential sites (bare lands and settlement areas), and 20 potential sites (water bodies). Each dataset is randomly partitioned into two sets: training (70%) and validation (30%). The model's performance is evaluated using the area under the receiver operating characteristic curve (AUC-ROC). The AUC of the RF model is 0.91, compared to 0.88 for the SVM model. Both models classified GWPZs effectively, but the RF model performed slightly better. The classified GWPZ map shows that high GWPZs are typically located within water bodies, natural springs, low-lying regions, and forested areas. In contrast, low GWPZs are primarily found in shrubland and grassland areas. This study is vital for decision-makers as it promotes sustainable groundwater use and ensures water security in the studied area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Challenges
Global Challenges MULTIDISCIPLINARY SCIENCES-
CiteScore
8.70
自引率
0.00%
发文量
79
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信