Fabien Boudia, Marie Baille, Loélia Babin, Zakia Aid, Elie Robert, Julie Rivière, Klaudia Galant, Verónica Alonso-Pérez, Laura Anselmi, Brahim Arkoun, Nassera Abermil, Christophe Marzac, Salvatore Nicola Bertuccio, Alexia de Prémesnil, Cécile K Lopez, Alexandre Eeckhoutte, Audrey Naimo, Betty Leite, Cyril Catelain, Christophe Metereau, Patrick Gonin, Nathalie Gaspar, Jürg Schwaller, Olivier A Bernard, Hana Raslova, Muriel Gaudry, Antonin Marchais, Hélène Lapillonne, Arnaud Petit, Françoise Pflumio, Marie-Laure Arcangeli, Erika Brunet, Thomas Mercher
{"title":"在小儿白血病的人类 iPSC 模型中揭示 ETO2::GLIS2 的染色质渐进重配。","authors":"Fabien Boudia, Marie Baille, Loélia Babin, Zakia Aid, Elie Robert, Julie Rivière, Klaudia Galant, Verónica Alonso-Pérez, Laura Anselmi, Brahim Arkoun, Nassera Abermil, Christophe Marzac, Salvatore Nicola Bertuccio, Alexia de Prémesnil, Cécile K Lopez, Alexandre Eeckhoutte, Audrey Naimo, Betty Leite, Cyril Catelain, Christophe Metereau, Patrick Gonin, Nathalie Gaspar, Jürg Schwaller, Olivier A Bernard, Hana Raslova, Muriel Gaudry, Antonin Marchais, Hélène Lapillonne, Arnaud Petit, Françoise Pflumio, Marie-Laure Arcangeli, Erika Brunet, Thomas Mercher","doi":"10.1182/blood.2024024505","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Pediatric acute myeloid leukemia frequently harbors fusion oncogenes associated with poor prognosis, including KMT2A, NUP98, and GLIS2 rearrangements. Although murine models have demonstrated their leukemogenic activities, the steps from a normal human cell to leukemic blasts remain unclear. Here, we precisely reproduced the inversion of chromosome 16 resulting in the ETO2::GLIS2 fusion in human induced pluripotent stem cells (iPSCs). iPSC-derived ETO2::GLIS2-expressing hematopoietic cells showed differentiation alterations in vitro and efficiently induced in vivo development of leukemia that closely phenocopied human acute megakaryoblastic leukemia (AMKL), reflected by flow cytometry and single-cell transcriptomes. Comparison of iPS-derived cells with patient-derived cells revealed altered chromatin accessibility at early and later bona fide leukemia stages, with aberrantly higher accessibility and expression of the osteogenic homeobox factor DLX3 that preceded increased accessibility to ETS factors. DLX3 overexpression in normal CD34+ cells increased accessibility to ETS motifs and reduced accessibility to GATA motifs. A DLX3 transcriptional module was globally enriched in both ETO2::GLIS2 AMKL and some aggressive pediatric osteosarcoma. Importantly, DLX3 knockout abrogated leukemia initiation in this ETO2::GLIS2 iPSC model. Collectively, the characterization of a novel human iPSC-derived AMKL model revealed that hijacking of the osteogenic homeobox transcription factor DLX3 is an essential early step in chromatin changes and leukemogenesis driven by the ETO2::GLIS2 fusion oncogene.</p>","PeriodicalId":9102,"journal":{"name":"Blood","volume":" ","pages":"1510-1525"},"PeriodicalIF":21.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive chromatin rewiring by ETO2::GLIS2 revealed in a genome-edited human iPSC model of pediatric leukemia initiation.\",\"authors\":\"Fabien Boudia, Marie Baille, Loélia Babin, Zakia Aid, Elie Robert, Julie Rivière, Klaudia Galant, Verónica Alonso-Pérez, Laura Anselmi, Brahim Arkoun, Nassera Abermil, Christophe Marzac, Salvatore Nicola Bertuccio, Alexia de Prémesnil, Cécile K Lopez, Alexandre Eeckhoutte, Audrey Naimo, Betty Leite, Cyril Catelain, Christophe Metereau, Patrick Gonin, Nathalie Gaspar, Jürg Schwaller, Olivier A Bernard, Hana Raslova, Muriel Gaudry, Antonin Marchais, Hélène Lapillonne, Arnaud Petit, Françoise Pflumio, Marie-Laure Arcangeli, Erika Brunet, Thomas Mercher\",\"doi\":\"10.1182/blood.2024024505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Pediatric acute myeloid leukemia frequently harbors fusion oncogenes associated with poor prognosis, including KMT2A, NUP98, and GLIS2 rearrangements. Although murine models have demonstrated their leukemogenic activities, the steps from a normal human cell to leukemic blasts remain unclear. Here, we precisely reproduced the inversion of chromosome 16 resulting in the ETO2::GLIS2 fusion in human induced pluripotent stem cells (iPSCs). iPSC-derived ETO2::GLIS2-expressing hematopoietic cells showed differentiation alterations in vitro and efficiently induced in vivo development of leukemia that closely phenocopied human acute megakaryoblastic leukemia (AMKL), reflected by flow cytometry and single-cell transcriptomes. Comparison of iPS-derived cells with patient-derived cells revealed altered chromatin accessibility at early and later bona fide leukemia stages, with aberrantly higher accessibility and expression of the osteogenic homeobox factor DLX3 that preceded increased accessibility to ETS factors. DLX3 overexpression in normal CD34+ cells increased accessibility to ETS motifs and reduced accessibility to GATA motifs. A DLX3 transcriptional module was globally enriched in both ETO2::GLIS2 AMKL and some aggressive pediatric osteosarcoma. Importantly, DLX3 knockout abrogated leukemia initiation in this ETO2::GLIS2 iPSC model. Collectively, the characterization of a novel human iPSC-derived AMKL model revealed that hijacking of the osteogenic homeobox transcription factor DLX3 is an essential early step in chromatin changes and leukemogenesis driven by the ETO2::GLIS2 fusion oncogene.</p>\",\"PeriodicalId\":9102,\"journal\":{\"name\":\"Blood\",\"volume\":\" \",\"pages\":\"1510-1525\"},\"PeriodicalIF\":21.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1182/blood.2024024505\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2024024505","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Progressive chromatin rewiring by ETO2::GLIS2 revealed in a genome-edited human iPSC model of pediatric leukemia initiation.
Abstract: Pediatric acute myeloid leukemia frequently harbors fusion oncogenes associated with poor prognosis, including KMT2A, NUP98, and GLIS2 rearrangements. Although murine models have demonstrated their leukemogenic activities, the steps from a normal human cell to leukemic blasts remain unclear. Here, we precisely reproduced the inversion of chromosome 16 resulting in the ETO2::GLIS2 fusion in human induced pluripotent stem cells (iPSCs). iPSC-derived ETO2::GLIS2-expressing hematopoietic cells showed differentiation alterations in vitro and efficiently induced in vivo development of leukemia that closely phenocopied human acute megakaryoblastic leukemia (AMKL), reflected by flow cytometry and single-cell transcriptomes. Comparison of iPS-derived cells with patient-derived cells revealed altered chromatin accessibility at early and later bona fide leukemia stages, with aberrantly higher accessibility and expression of the osteogenic homeobox factor DLX3 that preceded increased accessibility to ETS factors. DLX3 overexpression in normal CD34+ cells increased accessibility to ETS motifs and reduced accessibility to GATA motifs. A DLX3 transcriptional module was globally enriched in both ETO2::GLIS2 AMKL and some aggressive pediatric osteosarcoma. Importantly, DLX3 knockout abrogated leukemia initiation in this ETO2::GLIS2 iPSC model. Collectively, the characterization of a novel human iPSC-derived AMKL model revealed that hijacking of the osteogenic homeobox transcription factor DLX3 is an essential early step in chromatin changes and leukemogenesis driven by the ETO2::GLIS2 fusion oncogene.
期刊介绍:
Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.