利用空间相干均值-标准差因子波束成形增强光声成像中的图像重建。

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2024-11-05 eCollection Date: 2024-12-01 DOI:10.1364/BOE.542710
Xinsheng Wang, Dan Wu, Yonghua Xie, Yuanyuan Bi, Yunqing Xu, Jing Zhang, Qing Luo, Huabei Jiang
{"title":"利用空间相干均值-标准差因子波束成形增强光声成像中的图像重建。","authors":"Xinsheng Wang, Dan Wu, Yonghua Xie, Yuanyuan Bi, Yunqing Xu, Jing Zhang, Qing Luo, Huabei Jiang","doi":"10.1364/BOE.542710","DOIUrl":null,"url":null,"abstract":"<p><p>In photoacoustic imaging (PAI), a delay-and-sum (DAS) beamforming reconstruction algorithm is widely used due to its ease of implementation and fast execution. However, it is plagued by issues such as high sidelobe artifacts and low contrast, that significantly hinder the ability to differentiate various structures in the reconstructed images. In this study, we propose an adaptive weighting factor called spatial coherence mean-to-standard deviation factor (scMSF) in DAS, which is extended into the spatial frequency domain. By combining scMSF with a minimum variance (MV) algorithm, the clutter level is reduced, thereby enhancing the image contrast. Quantitative results obtained from the phantom experiment demonstrate that our proposed method improves contrast ratio (CR) by 30.15 dB and signal-to-noise ratio (SNR) by 8.62 dB compared to DAS while also improving full-width at half maxima (FWHM) by 56%. From the <i>in-vivo</i> experiments, the scMSF-based reconstruction image exhibits a higher generalized contrast-to-noise ratio (gCNR), indicating improved target detectability with a 25.6% enhancement over DAS and a 22.5% improvement over MV.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 12","pages":"6682-6696"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11640575/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing image reconstruction in photoacoustic imaging using spatial coherence mean-to-standard-deviation factor beamforming.\",\"authors\":\"Xinsheng Wang, Dan Wu, Yonghua Xie, Yuanyuan Bi, Yunqing Xu, Jing Zhang, Qing Luo, Huabei Jiang\",\"doi\":\"10.1364/BOE.542710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In photoacoustic imaging (PAI), a delay-and-sum (DAS) beamforming reconstruction algorithm is widely used due to its ease of implementation and fast execution. However, it is plagued by issues such as high sidelobe artifacts and low contrast, that significantly hinder the ability to differentiate various structures in the reconstructed images. In this study, we propose an adaptive weighting factor called spatial coherence mean-to-standard deviation factor (scMSF) in DAS, which is extended into the spatial frequency domain. By combining scMSF with a minimum variance (MV) algorithm, the clutter level is reduced, thereby enhancing the image contrast. Quantitative results obtained from the phantom experiment demonstrate that our proposed method improves contrast ratio (CR) by 30.15 dB and signal-to-noise ratio (SNR) by 8.62 dB compared to DAS while also improving full-width at half maxima (FWHM) by 56%. From the <i>in-vivo</i> experiments, the scMSF-based reconstruction image exhibits a higher generalized contrast-to-noise ratio (gCNR), indicating improved target detectability with a 25.6% enhancement over DAS and a 22.5% improvement over MV.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"15 12\",\"pages\":\"6682-6696\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11640575/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.542710\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.542710","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing image reconstruction in photoacoustic imaging using spatial coherence mean-to-standard-deviation factor beamforming.

In photoacoustic imaging (PAI), a delay-and-sum (DAS) beamforming reconstruction algorithm is widely used due to its ease of implementation and fast execution. However, it is plagued by issues such as high sidelobe artifacts and low contrast, that significantly hinder the ability to differentiate various structures in the reconstructed images. In this study, we propose an adaptive weighting factor called spatial coherence mean-to-standard deviation factor (scMSF) in DAS, which is extended into the spatial frequency domain. By combining scMSF with a minimum variance (MV) algorithm, the clutter level is reduced, thereby enhancing the image contrast. Quantitative results obtained from the phantom experiment demonstrate that our proposed method improves contrast ratio (CR) by 30.15 dB and signal-to-noise ratio (SNR) by 8.62 dB compared to DAS while also improving full-width at half maxima (FWHM) by 56%. From the in-vivo experiments, the scMSF-based reconstruction image exhibits a higher generalized contrast-to-noise ratio (gCNR), indicating improved target detectability with a 25.6% enhancement over DAS and a 22.5% improvement over MV.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信