IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2024-10-03 DOI:10.1093/biomtc/ujae137
Ioannis Oikonomidis, Samis Trevezas
{"title":"Cumulative link mixed-effects models in the service of remote sensing crop progress monitoring.","authors":"Ioannis Oikonomidis, Samis Trevezas","doi":"10.1093/biomtc/ujae137","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces an innovative cumulative link modeling (CLM) approach to monitor crop progress over large areas using remote sensing data. Two distinct models are developed, a fixed-effects CLM and a mixed-effects one that incorporates annual random effects to capture the inherent inter-seasonal variability. Inference is based on partial-likelihood with two law variations, the standard CLM based on the multinomial distribution and a novel one based on the product binomial distribution. Model performance is evaluated on eight crops, namely corn, oats, sorghum, soybeans, winter wheat, alfalfa, dry beans, and millet, using in-situ data from Nebraska, USA, spanning 20 years. The models utilize the predictive attributes of calendar time, thermal time, and the normalized difference vegetation index. The results demonstrate the wide applicability of this approach to different crops, providing large-scale predictions of crop progress and allowing the estimation of important agronomic parameters. To facilitate reproducibility, an ecosystem of R packages has been developed and made publicly accessible under the name Ages of Man. The packages can be utilized to implement the presented methodology in any area with this type of data, including the USA.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae137","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究引入了一种创新的累积链接建模(CLM)方法,利用遥感数据监测大面积作物的生长进度。研究开发了两种不同的模型,一种是固定效应累积联系模型,另一种是混合效应累积联系模型,其中包含年度随机效应,以捕捉固有的季节间变异性。推论基于部分似然法,有两种法则变化,一种是基于多二项分布的标准 CLM,另一种是基于乘积二项分布的新型 CLM。利用美国内布拉斯加州 20 年的现场数据,对玉米、燕麦、高粱、大豆、冬小麦、苜蓿、干豆和小米等八种作物的模型性能进行了评估。这些模型利用日历时间、热时间和归一化差异植被指数等预测属性。结果表明,这种方法可广泛应用于不同作物,对作物生长进度进行大规模预测,并能估算重要的农艺参数。为了促进可重复性,我们开发了一个 R 软件包生态系统,并以 "人类的年龄 "为名向公众开放。这些软件包可用于在任何拥有此类数据的地区(包括美国)实施所介绍的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cumulative link mixed-effects models in the service of remote sensing crop progress monitoring.

This study introduces an innovative cumulative link modeling (CLM) approach to monitor crop progress over large areas using remote sensing data. Two distinct models are developed, a fixed-effects CLM and a mixed-effects one that incorporates annual random effects to capture the inherent inter-seasonal variability. Inference is based on partial-likelihood with two law variations, the standard CLM based on the multinomial distribution and a novel one based on the product binomial distribution. Model performance is evaluated on eight crops, namely corn, oats, sorghum, soybeans, winter wheat, alfalfa, dry beans, and millet, using in-situ data from Nebraska, USA, spanning 20 years. The models utilize the predictive attributes of calendar time, thermal time, and the normalized difference vegetation index. The results demonstrate the wide applicability of this approach to different crops, providing large-scale predictions of crop progress and allowing the estimation of important agronomic parameters. To facilitate reproducibility, an ecosystem of R packages has been developed and made publicly accessible under the name Ages of Man. The packages can be utilized to implement the presented methodology in any area with this type of data, including the USA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信