Miah Roney, Abdul Rashid Issahaku, Md Nazim Uddin, Anke Wilhelm, Mohd Fadhlizil Fasihi Mohd Aluwi
{"title":"从双吲哚基三嗪衍生物中探索针对 2 型糖尿病人醛糖还原酶的线索:硅内方法。","authors":"Miah Roney, Abdul Rashid Issahaku, Md Nazim Uddin, Anke Wilhelm, Mohd Fadhlizil Fasihi Mohd Aluwi","doi":"10.1007/s13205-024-04178-1","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) poses a major global healthcare challenge, highlighting the need for new treatments beyond current options. Currently available drugs have side effects including weight gain, nausea, vomiting, diarrhea, insulin resistance etc. Therefore, given the benefits of indole derivatives in diabetes and the lack of computational studies on bis-indole-based triazine derivatives with aldose reductase (AR), this study employs in-silico analysis to explore their potential as type-2 diabetes treatments. Based on the Differential Expression analysis, the human aldose reductase (HAR) encoding gene AKR1B1 showed overexpression in GSE30122 diabetes patients (Log2FC = 0.62, <i>P</i> < 0.01). Moreover, the compounds 2-((5,6-di(1H-indol-3-yl)-1,2,4-triazin-3-yl)thio)-1-(3-hydroxy-5-methylphenyl)ethan-1-one (4) and 2-((5,6-di(1H-indol-3-yl)-1,2,4-triazin-3-yl)thio)-1-(4-nitrophenyl)ethan-1-one (8) were identified as leading candidates, showing binding energies of - 62.12, - 81.73 kcal/mol and - 57.19, - 85.97 kcal/mol, respectively. Docking, MM/GBSA screening, molecular dynamics (MD) simulations, PCA, and post-MM/GBSA analysis confirmed their stability and favorable binding compared to the apo protein and control. Further in-vitro, in-vivo, and clinical studies are required to validate their therapeutic potential.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"5"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635081/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploration of leads from bis-indole based triazine derivatives targeting human aldose reductase in diabetic type 2: in-silico approaches.\",\"authors\":\"Miah Roney, Abdul Rashid Issahaku, Md Nazim Uddin, Anke Wilhelm, Mohd Fadhlizil Fasihi Mohd Aluwi\",\"doi\":\"10.1007/s13205-024-04178-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus (DM) poses a major global healthcare challenge, highlighting the need for new treatments beyond current options. Currently available drugs have side effects including weight gain, nausea, vomiting, diarrhea, insulin resistance etc. Therefore, given the benefits of indole derivatives in diabetes and the lack of computational studies on bis-indole-based triazine derivatives with aldose reductase (AR), this study employs in-silico analysis to explore their potential as type-2 diabetes treatments. Based on the Differential Expression analysis, the human aldose reductase (HAR) encoding gene AKR1B1 showed overexpression in GSE30122 diabetes patients (Log2FC = 0.62, <i>P</i> < 0.01). Moreover, the compounds 2-((5,6-di(1H-indol-3-yl)-1,2,4-triazin-3-yl)thio)-1-(3-hydroxy-5-methylphenyl)ethan-1-one (4) and 2-((5,6-di(1H-indol-3-yl)-1,2,4-triazin-3-yl)thio)-1-(4-nitrophenyl)ethan-1-one (8) were identified as leading candidates, showing binding energies of - 62.12, - 81.73 kcal/mol and - 57.19, - 85.97 kcal/mol, respectively. Docking, MM/GBSA screening, molecular dynamics (MD) simulations, PCA, and post-MM/GBSA analysis confirmed their stability and favorable binding compared to the apo protein and control. Further in-vitro, in-vivo, and clinical studies are required to validate their therapeutic potential.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"15 1\",\"pages\":\"5\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635081/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04178-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04178-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Exploration of leads from bis-indole based triazine derivatives targeting human aldose reductase in diabetic type 2: in-silico approaches.
Diabetes mellitus (DM) poses a major global healthcare challenge, highlighting the need for new treatments beyond current options. Currently available drugs have side effects including weight gain, nausea, vomiting, diarrhea, insulin resistance etc. Therefore, given the benefits of indole derivatives in diabetes and the lack of computational studies on bis-indole-based triazine derivatives with aldose reductase (AR), this study employs in-silico analysis to explore their potential as type-2 diabetes treatments. Based on the Differential Expression analysis, the human aldose reductase (HAR) encoding gene AKR1B1 showed overexpression in GSE30122 diabetes patients (Log2FC = 0.62, P < 0.01). Moreover, the compounds 2-((5,6-di(1H-indol-3-yl)-1,2,4-triazin-3-yl)thio)-1-(3-hydroxy-5-methylphenyl)ethan-1-one (4) and 2-((5,6-di(1H-indol-3-yl)-1,2,4-triazin-3-yl)thio)-1-(4-nitrophenyl)ethan-1-one (8) were identified as leading candidates, showing binding energies of - 62.12, - 81.73 kcal/mol and - 57.19, - 85.97 kcal/mol, respectively. Docking, MM/GBSA screening, molecular dynamics (MD) simulations, PCA, and post-MM/GBSA analysis confirmed their stability and favorable binding compared to the apo protein and control. Further in-vitro, in-vivo, and clinical studies are required to validate their therapeutic potential.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.