Zan Lamberger, Camilla Mussoni, Nicoletta Murenu, Mateo Andrade Mier, Philipp Stahlhut, Taufiq Ahmad, Natascha Schaefer, Carmen Villmann, Sarah Zwingelberg, Jürgen Groll, Gregor Lang
{"title":"Streamlining the Highly Reproducible Fabrication of Fibrous Biomedical Specimens toward Standardization and High Throughput.","authors":"Zan Lamberger, Camilla Mussoni, Nicoletta Murenu, Mateo Andrade Mier, Philipp Stahlhut, Taufiq Ahmad, Natascha Schaefer, Carmen Villmann, Sarah Zwingelberg, Jürgen Groll, Gregor Lang","doi":"10.1002/adhm.202402527","DOIUrl":null,"url":null,"abstract":"<p><p>Soft nano- and microfiber-based polymer scaffolds bear enormous potential for their use in cell culture and tissue engineering since they mimic natural collagen structures and may thus serve as biomimetic adhesive substrates. They have, however, so far been restricted to small-scale production in research labs with high batch-to-batch variation. They are commonly produced via electrospinning or melt electrowriting and their delicate nature poses obstacles in detachment, storage, and transportation. This study focuses on overcoming challenges in the high throughput production and practical handling, introducing new methods to reproducibly prepare such scaffolds suitable for quantitative cell culture applications. Attention is given to the seamless handling and transfer of samples without compromising structural integrity. Challenges in detaching fibers without damage as well as storage, and transport are addressed. Cell culture studies demonstrate the methodological advantages, emphasizing the potential for standardized testing and biological readouts of these delicate fiber materials. The developed methods are applicable across various electrospinning and melt electrowriting approaches and can essentially contribute to their utilization in laboratory research and commercial applications.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2402527"},"PeriodicalIF":10.0000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202402527","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Streamlining the Highly Reproducible Fabrication of Fibrous Biomedical Specimens toward Standardization and High Throughput.
Soft nano- and microfiber-based polymer scaffolds bear enormous potential for their use in cell culture and tissue engineering since they mimic natural collagen structures and may thus serve as biomimetic adhesive substrates. They have, however, so far been restricted to small-scale production in research labs with high batch-to-batch variation. They are commonly produced via electrospinning or melt electrowriting and their delicate nature poses obstacles in detachment, storage, and transportation. This study focuses on overcoming challenges in the high throughput production and practical handling, introducing new methods to reproducibly prepare such scaffolds suitable for quantitative cell culture applications. Attention is given to the seamless handling and transfer of samples without compromising structural integrity. Challenges in detaching fibers without damage as well as storage, and transport are addressed. Cell culture studies demonstrate the methodological advantages, emphasizing the potential for standardized testing and biological readouts of these delicate fiber materials. The developed methods are applicable across various electrospinning and melt electrowriting approaches and can essentially contribute to their utilization in laboratory research and commercial applications.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.