Minhua Deng, Zhaohui Zhou, Jiawei Chen, Xiangdong Li, Zefu Liu, Jingwei Ye, Wensu Wei, Ning Wang, Yulu Peng, Xin Luo, Lijuan Jiang, Fangjian Zhou, Xianchong Zheng, Zhuowei Liu
{"title":"Enhanced Oxidative Phosphorylation Driven by TACO1 Mitochondrial Translocation Promotes Stemness and Cisplatin Resistance in Bladder Cancer.","authors":"Minhua Deng, Zhaohui Zhou, Jiawei Chen, Xiangdong Li, Zefu Liu, Jingwei Ye, Wensu Wei, Ning Wang, Yulu Peng, Xin Luo, Lijuan Jiang, Fangjian Zhou, Xianchong Zheng, Zhuowei Liu","doi":"10.1002/advs.202408599","DOIUrl":null,"url":null,"abstract":"<p><p>Chemoresistance poses a critical obstacle in bladder cancer (BCa) treatment, and effective interventions are currently limited. Elevated oxidative phosphorylation (OXPHOS) has been linked to cancer stemness, a determinant of chemoresistance. However, the mechanisms underlying increased OXPHOS during cancer cell chemoresistance remain unclear. This study revealed that the mitochondrial translational activator of cytochrome oxidase subunit 1 (TACO1) is linked to stemness and cisplatin resistance in BCa cells. Mechanistically, mitochondrial TACO1 enhances the translation of the mitochondrial cytochrome c oxidase I (MTCO1), promoting mitochondrial reactive oxygen species (mtROS) by upregulating OXPHOS, consequently driving cancer stemness and cisplatin resistance. Intriguingly, the mitochondrial translocation of TACO1 is mediated by the heat shock protein 90 β (HSP90β), a process that requires circFOXK2 as a scaffold for the TACO1-HSP90β interaction. The mutations at the binding sites of TACO1-circFOXK2-HSP90β disturb the ternary complex and inhibit cancer stemness and cisplatin resistance in BCa cells by suppressing the MTCO1/OXPHOS/mtROS axis. Clinically, BCa patients with increased mitochondrial TACO1 expression respond poorly to cisplatin treatment. This study elucidates the mechanisms by which TACO1 promotes BCa stemness and cisplatin resistance, providing a potential target for mitigating cisplatin resistance for BCa and a biomarker for predicting cisplatin response.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2408599"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202408599","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced Oxidative Phosphorylation Driven by TACO1 Mitochondrial Translocation Promotes Stemness and Cisplatin Resistance in Bladder Cancer.
Chemoresistance poses a critical obstacle in bladder cancer (BCa) treatment, and effective interventions are currently limited. Elevated oxidative phosphorylation (OXPHOS) has been linked to cancer stemness, a determinant of chemoresistance. However, the mechanisms underlying increased OXPHOS during cancer cell chemoresistance remain unclear. This study revealed that the mitochondrial translational activator of cytochrome oxidase subunit 1 (TACO1) is linked to stemness and cisplatin resistance in BCa cells. Mechanistically, mitochondrial TACO1 enhances the translation of the mitochondrial cytochrome c oxidase I (MTCO1), promoting mitochondrial reactive oxygen species (mtROS) by upregulating OXPHOS, consequently driving cancer stemness and cisplatin resistance. Intriguingly, the mitochondrial translocation of TACO1 is mediated by the heat shock protein 90 β (HSP90β), a process that requires circFOXK2 as a scaffold for the TACO1-HSP90β interaction. The mutations at the binding sites of TACO1-circFOXK2-HSP90β disturb the ternary complex and inhibit cancer stemness and cisplatin resistance in BCa cells by suppressing the MTCO1/OXPHOS/mtROS axis. Clinically, BCa patients with increased mitochondrial TACO1 expression respond poorly to cisplatin treatment. This study elucidates the mechanisms by which TACO1 promotes BCa stemness and cisplatin resistance, providing a potential target for mitigating cisplatin resistance for BCa and a biomarker for predicting cisplatin response.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.