三价离子分子桥作为全固态有机突触晶体管的高效电荷捕获方法,实现神经形态信号处理应用。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Taehoon Kim, Woongki Lee, Youngkyoo Kim
{"title":"三价离子分子桥作为全固态有机突触晶体管的高效电荷捕获方法,实现神经形态信号处理应用。","authors":"Taehoon Kim, Woongki Lee, Youngkyoo Kim","doi":"10.1002/smtd.202401885","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving high retention of memory state is crucial in artificial synapse devices for neuromorphic computing systems. Of various memorizing methods, a charge-trapping method provides fast response times when it comes to the smallest size of electrons. Here, for the first time, it is demonstrated that trivalent molecular bridges with three ionic bond sites in the polymeric films can efficiently trap electrons in the organic synaptic transistors (OSTRs). A water-soluble polymer with sulfonic acid groups, poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA), is reacted with melamine (ML) to make trivalent molecular bridges with three ionic bond sites for the application of charge-trapping and gate-insulating layer in all-solid-state OSTRs. The OSTRs with the PAMPSA:ML layers are operated at low voltages (≤5 V) with pronounced hysteresis and high memory retention characteristics (ML = 25 mol%) and delivered excellent potentiation/depression performances under modulation of gate pulse frequency. The optimized OSTRs could successfully process analog (Morse/Braile) signals to synaptic current datasets for recognition/prediction logics with an accuracy of >95%, supporting strong potential as all-solid-state synaptic devices for neuromorphic systems in artificial intelligence applications.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401885"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trivalent Ionic Molecular Bridges as Efficient Charge-Trapping Method for All-Solid-State Organic Synaptic Transistors toward Neuromorphic Signal Processing Applications.\",\"authors\":\"Taehoon Kim, Woongki Lee, Youngkyoo Kim\",\"doi\":\"10.1002/smtd.202401885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Achieving high retention of memory state is crucial in artificial synapse devices for neuromorphic computing systems. Of various memorizing methods, a charge-trapping method provides fast response times when it comes to the smallest size of electrons. Here, for the first time, it is demonstrated that trivalent molecular bridges with three ionic bond sites in the polymeric films can efficiently trap electrons in the organic synaptic transistors (OSTRs). A water-soluble polymer with sulfonic acid groups, poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA), is reacted with melamine (ML) to make trivalent molecular bridges with three ionic bond sites for the application of charge-trapping and gate-insulating layer in all-solid-state OSTRs. The OSTRs with the PAMPSA:ML layers are operated at low voltages (≤5 V) with pronounced hysteresis and high memory retention characteristics (ML = 25 mol%) and delivered excellent potentiation/depression performances under modulation of gate pulse frequency. The optimized OSTRs could successfully process analog (Morse/Braile) signals to synaptic current datasets for recognition/prediction logics with an accuracy of >95%, supporting strong potential as all-solid-state synaptic devices for neuromorphic systems in artificial intelligence applications.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401885\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401885\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401885","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在神经形态计算系统的人工突触设备中,实现记忆状态的高度保持至关重要。在各种记忆方法中,当涉及到最小尺寸的电子时,电荷捕获方法可提供快速响应时间。本文首次证明,聚合物薄膜中具有三个离子键位点的三价分子桥可以在有机突触晶体管(OSTR)中有效捕获电子。一种带有磺酸基团的水溶性聚合物--聚(2-丙烯酰胺基-2-甲基-1-丙磺酸)(PAMPSA)与三聚氰胺(ML)发生反应,制成带有三个离子键位点的三价分子桥,用于全固态 OSTR 中的电荷捕获和栅极绝缘层。带有 PAMPSA:ML 层的 OSTR 可在低电压(≤5 V)下工作,具有明显的滞后性和高记忆保持特性(ML = 25 mol%),并在栅脉冲频率调制下具有出色的增效/抑制性能。优化后的 OSTRs 可成功地将模拟(莫尔斯/布莱尔)信号处理成突触电流数据集,用于识别/预测逻辑,准确率大于 95%,具有作为全固态突触器件用于人工智能神经形态系统的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trivalent Ionic Molecular Bridges as Efficient Charge-Trapping Method for All-Solid-State Organic Synaptic Transistors toward Neuromorphic Signal Processing Applications.

Achieving high retention of memory state is crucial in artificial synapse devices for neuromorphic computing systems. Of various memorizing methods, a charge-trapping method provides fast response times when it comes to the smallest size of electrons. Here, for the first time, it is demonstrated that trivalent molecular bridges with three ionic bond sites in the polymeric films can efficiently trap electrons in the organic synaptic transistors (OSTRs). A water-soluble polymer with sulfonic acid groups, poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA), is reacted with melamine (ML) to make trivalent molecular bridges with three ionic bond sites for the application of charge-trapping and gate-insulating layer in all-solid-state OSTRs. The OSTRs with the PAMPSA:ML layers are operated at low voltages (≤5 V) with pronounced hysteresis and high memory retention characteristics (ML = 25 mol%) and delivered excellent potentiation/depression performances under modulation of gate pulse frequency. The optimized OSTRs could successfully process analog (Morse/Braile) signals to synaptic current datasets for recognition/prediction logics with an accuracy of >95%, supporting strong potential as all-solid-state synaptic devices for neuromorphic systems in artificial intelligence applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信