Duo Wang, Lei Zhang, Wei-Hao Yang, Lin-Zhu Zhang, Chao Yu, Juan Qin, Liang-Zhu Feng, Zhuang Liu, Gao-Jun Teng
{"title":"精氨酸负载的纳米磷酸钙稳定脂碘皮克林乳剂能增强经动脉栓塞-免疫疗法的效果。","authors":"Duo Wang, Lei Zhang, Wei-Hao Yang, Lin-Zhu Zhang, Chao Yu, Juan Qin, Liang-Zhu Feng, Zhuang Liu, Gao-Jun Teng","doi":"10.1002/advs.202410484","DOIUrl":null,"url":null,"abstract":"<p><p>Transarterial chemoembolization (TACE) continues to stand as a primary option for treating unresectable hepatocellular carcinoma (HCC). However, the increased tumor hypoxia and acidification will lead to the immunosuppressive tumor microenvironment (TME) featuring exhausted T cells, limiting the effectiveness of subsequent therapies following TACE. Herein, a stable water-in-oil lipiodol Pickering emulsion by employing calcium phosphate nanoparticles (CaP NPs) as stabilizers is developed and used to encapsulate L-arginine (L-Arg), which is known for its ability to modulate T-cell metabolism. The obtained L-Arg-loaded CaP-stabilized lipiodol Pickering emulsion (L-Arg@CaPL) with great emulsion stability can not only neutralize the tumor acidity via reaction of CaP NPs with protons but also enable the release of L-Arg, thereby synergistically promoting the reinvigoration of exhausted CD8<sup>+</sup> T cells and effectively reversing tumor immunosuppression. As a result, TACE therapy with L-Arg@CaPL shows greatly improved therapeutic responses as demonstrated in an orthotopic liver tumor model in rats. This study highlights an effective yet simple nanoparticle-stabilized Pickering emulsion strategy to promote TACE therapy via modulation of the immunosuppressive TME, presenting great potential for clinical translation.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2410484"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arginine-Loaded Nano-Calcium-Phosphate-Stabilized Lipiodol Pickering Emulsions Potentiates Transarterial Embolization-Immunotherapy.\",\"authors\":\"Duo Wang, Lei Zhang, Wei-Hao Yang, Lin-Zhu Zhang, Chao Yu, Juan Qin, Liang-Zhu Feng, Zhuang Liu, Gao-Jun Teng\",\"doi\":\"10.1002/advs.202410484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transarterial chemoembolization (TACE) continues to stand as a primary option for treating unresectable hepatocellular carcinoma (HCC). However, the increased tumor hypoxia and acidification will lead to the immunosuppressive tumor microenvironment (TME) featuring exhausted T cells, limiting the effectiveness of subsequent therapies following TACE. Herein, a stable water-in-oil lipiodol Pickering emulsion by employing calcium phosphate nanoparticles (CaP NPs) as stabilizers is developed and used to encapsulate L-arginine (L-Arg), which is known for its ability to modulate T-cell metabolism. The obtained L-Arg-loaded CaP-stabilized lipiodol Pickering emulsion (L-Arg@CaPL) with great emulsion stability can not only neutralize the tumor acidity via reaction of CaP NPs with protons but also enable the release of L-Arg, thereby synergistically promoting the reinvigoration of exhausted CD8<sup>+</sup> T cells and effectively reversing tumor immunosuppression. As a result, TACE therapy with L-Arg@CaPL shows greatly improved therapeutic responses as demonstrated in an orthotopic liver tumor model in rats. This study highlights an effective yet simple nanoparticle-stabilized Pickering emulsion strategy to promote TACE therapy via modulation of the immunosuppressive TME, presenting great potential for clinical translation.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2410484\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202410484\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202410484","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Transarterial chemoembolization (TACE) continues to stand as a primary option for treating unresectable hepatocellular carcinoma (HCC). However, the increased tumor hypoxia and acidification will lead to the immunosuppressive tumor microenvironment (TME) featuring exhausted T cells, limiting the effectiveness of subsequent therapies following TACE. Herein, a stable water-in-oil lipiodol Pickering emulsion by employing calcium phosphate nanoparticles (CaP NPs) as stabilizers is developed and used to encapsulate L-arginine (L-Arg), which is known for its ability to modulate T-cell metabolism. The obtained L-Arg-loaded CaP-stabilized lipiodol Pickering emulsion (L-Arg@CaPL) with great emulsion stability can not only neutralize the tumor acidity via reaction of CaP NPs with protons but also enable the release of L-Arg, thereby synergistically promoting the reinvigoration of exhausted CD8+ T cells and effectively reversing tumor immunosuppression. As a result, TACE therapy with L-Arg@CaPL shows greatly improved therapeutic responses as demonstrated in an orthotopic liver tumor model in rats. This study highlights an effective yet simple nanoparticle-stabilized Pickering emulsion strategy to promote TACE therapy via modulation of the immunosuppressive TME, presenting great potential for clinical translation.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.