超短脉冲激光烧蚀二维多尺度模拟中从表面粗糙到凹坑形成的过程

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
N. Thomae, M. Stabroth, J. Vollmann, M. Döring, D. Redka, H. P. Huber, M. Schmidt
{"title":"超短脉冲激光烧蚀二维多尺度模拟中从表面粗糙到凹坑形成的过程","authors":"N. Thomae,&nbsp;M. Stabroth,&nbsp;J. Vollmann,&nbsp;M. Döring,&nbsp;D. Redka,&nbsp;H. P. Huber,&nbsp;M. Schmidt","doi":"10.1007/s00339-024-08064-8","DOIUrl":null,"url":null,"abstract":"<div><p>Surface roughness plays a critical role in ultrashort pulse laser ablation, particularly for industrial applications using burst mode operations, multi-pulse laser processing, and the generation of laser-induced periodic surface structures. Hence, we address the impact of surface roughness on the resulting laser ablation topography, comparing predictions from a simulation model to experimental results. We present a comprehensive multi-scale simulation framework that first employs finite-difference-time-domain simulations for calculating the surface fluence distribution on a rough surface measured by atomic-force-microscopy followed by the two-temperature model coupled with hydrodynamic/solid mechanics simulation for the initial material heating. Lastly, a computational fluid dynamics model for material relaxation and fluid flow is developed and employed. Final state results of aluminum and AISI 304 stainless steel simulations demonstrated alignment with established ablation models and crater dimension prediction. Notably, Al exhibited significant optical scattering effects due to initial surface roughness of 15 nm—being 70 times below the laser wavelength -leading to localized, selective ablation processes and substantially altered crater topography compared to idealized conditions. Contrary, AISI 304 with <span>\\({R}_{\\text{q}}\\)</span> surface roughness of 2 nm showed no difference. Hence, we highlight the necessity of incorporating realistic, material-specific surface roughness values into large-scale ablation simulations. Furthermore, the induced local fluence variations demonstrated the inadequacy of neglecting lateral heat transport effects in this context.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00339-024-08064-8.pdf","citationCount":"0","resultStr":"{\"title\":\"From surface roughness to crater formation in a 2D multi-scale simulation of ultrashort pulse laser ablation\",\"authors\":\"N. Thomae,&nbsp;M. Stabroth,&nbsp;J. Vollmann,&nbsp;M. Döring,&nbsp;D. Redka,&nbsp;H. P. Huber,&nbsp;M. Schmidt\",\"doi\":\"10.1007/s00339-024-08064-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface roughness plays a critical role in ultrashort pulse laser ablation, particularly for industrial applications using burst mode operations, multi-pulse laser processing, and the generation of laser-induced periodic surface structures. Hence, we address the impact of surface roughness on the resulting laser ablation topography, comparing predictions from a simulation model to experimental results. We present a comprehensive multi-scale simulation framework that first employs finite-difference-time-domain simulations for calculating the surface fluence distribution on a rough surface measured by atomic-force-microscopy followed by the two-temperature model coupled with hydrodynamic/solid mechanics simulation for the initial material heating. Lastly, a computational fluid dynamics model for material relaxation and fluid flow is developed and employed. Final state results of aluminum and AISI 304 stainless steel simulations demonstrated alignment with established ablation models and crater dimension prediction. Notably, Al exhibited significant optical scattering effects due to initial surface roughness of 15 nm—being 70 times below the laser wavelength -leading to localized, selective ablation processes and substantially altered crater topography compared to idealized conditions. Contrary, AISI 304 with <span>\\\\({R}_{\\\\text{q}}\\\\)</span> surface roughness of 2 nm showed no difference. Hence, we highlight the necessity of incorporating realistic, material-specific surface roughness values into large-scale ablation simulations. Furthermore, the induced local fluence variations demonstrated the inadequacy of neglecting lateral heat transport effects in this context.</p></div>\",\"PeriodicalId\":473,\"journal\":{\"name\":\"Applied Physics A\",\"volume\":\"131 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00339-024-08064-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics A\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00339-024-08064-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-024-08064-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

表面粗糙度在超短脉冲激光烧蚀中起着至关重要的作用,尤其是在使用猝发模式操作、多脉冲激光加工和产生激光诱导周期性表面结构的工业应用中。因此,我们研究了表面粗糙度对激光烧蚀形貌的影响,并将模拟模型的预测结果与实验结果进行了比较。我们提出了一个全面的多尺度模拟框架,首先利用有限差分时域模拟计算原子力显微镜测量的粗糙表面上的表面通量分布,然后利用双温模型结合流体力学/固体力学模拟进行初始材料加热。最后,开发并使用了材料弛豫和流体流动的计算流体动力学模型。铝和 AISI 304 不锈钢模拟的最终状态结果显示与已建立的烧蚀模型和陨石坑尺寸预测相一致。值得注意的是,铝的初始表面粗糙度为 15 nm(低于激光波长 70 倍),表现出明显的光学散射效应,导致局部选择性烧蚀过程,与理想化条件相比,凹坑形貌发生了很大变化。与此相反,表面粗糙度为 2 纳米的 AISI 304 则没有任何差异。因此,我们强调有必要在大规模烧蚀模拟中加入切合实际的特定材料表面粗糙度值。此外,诱导的局部通量变化表明,在这种情况下忽略横向热传输效应是不够的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From surface roughness to crater formation in a 2D multi-scale simulation of ultrashort pulse laser ablation

Surface roughness plays a critical role in ultrashort pulse laser ablation, particularly for industrial applications using burst mode operations, multi-pulse laser processing, and the generation of laser-induced periodic surface structures. Hence, we address the impact of surface roughness on the resulting laser ablation topography, comparing predictions from a simulation model to experimental results. We present a comprehensive multi-scale simulation framework that first employs finite-difference-time-domain simulations for calculating the surface fluence distribution on a rough surface measured by atomic-force-microscopy followed by the two-temperature model coupled with hydrodynamic/solid mechanics simulation for the initial material heating. Lastly, a computational fluid dynamics model for material relaxation and fluid flow is developed and employed. Final state results of aluminum and AISI 304 stainless steel simulations demonstrated alignment with established ablation models and crater dimension prediction. Notably, Al exhibited significant optical scattering effects due to initial surface roughness of 15 nm—being 70 times below the laser wavelength -leading to localized, selective ablation processes and substantially altered crater topography compared to idealized conditions. Contrary, AISI 304 with \({R}_{\text{q}}\) surface roughness of 2 nm showed no difference. Hence, we highlight the necessity of incorporating realistic, material-specific surface roughness values into large-scale ablation simulations. Furthermore, the induced local fluence variations demonstrated the inadequacy of neglecting lateral heat transport effects in this context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信