Xiantao Ma, Xiaoyu Yan, Jing Yu, Jiarui Guo, Jiakun Bian, Ran Yan, Qing Xu and Li-Biao Han
{"title":"无金属催化仲膦氧化物对伯醇的亲核取代作用†。","authors":"Xiantao Ma, Xiaoyu Yan, Jing Yu, Jiarui Guo, Jiakun Bian, Ran Yan, Qing Xu and Li-Biao Han","doi":"10.1039/D4GC04409F","DOIUrl":null,"url":null,"abstract":"<p >Due to their inert nature and low reactivities, the dehydrative version of the MA reaction has not been achieved under metal-free conditions. Here, we develop a direct and efficient metal-free nucleophilic substitution reaction of primary alcohols with secondary phosphine oxides using trimethyliodosilane (TMSI) as the catalyst, providing a simple and green method for synthesis of useful tertiary phosphine oxides. This method is very effective as it can be extended to various primary alcohols, including benzylic and allylic, and even the more inert primary aliphatic alcohols. Many products can be obtained with high purity by simple washing and/or recrystallization under column chromatography-free conditions. This method can also be scaled up easily and applied in one-pot step-wise transformations to synthesize useful chemicals. Mechanism studies suggested that the reaction can be considered as a dehydrative version of the Michaelis–Arbuzov reaction and that both alcohol dehydroxylation and dehydrogenation processes may be involved in the reaction.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 1","pages":" 102-108"},"PeriodicalIF":9.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal-free catalytic nucleophilic substitution of primary alcohols with secondary phosphine oxides†\",\"authors\":\"Xiantao Ma, Xiaoyu Yan, Jing Yu, Jiarui Guo, Jiakun Bian, Ran Yan, Qing Xu and Li-Biao Han\",\"doi\":\"10.1039/D4GC04409F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Due to their inert nature and low reactivities, the dehydrative version of the MA reaction has not been achieved under metal-free conditions. Here, we develop a direct and efficient metal-free nucleophilic substitution reaction of primary alcohols with secondary phosphine oxides using trimethyliodosilane (TMSI) as the catalyst, providing a simple and green method for synthesis of useful tertiary phosphine oxides. This method is very effective as it can be extended to various primary alcohols, including benzylic and allylic, and even the more inert primary aliphatic alcohols. Many products can be obtained with high purity by simple washing and/or recrystallization under column chromatography-free conditions. This method can also be scaled up easily and applied in one-pot step-wise transformations to synthesize useful chemicals. Mechanism studies suggested that the reaction can be considered as a dehydrative version of the Michaelis–Arbuzov reaction and that both alcohol dehydroxylation and dehydrogenation processes may be involved in the reaction.</p>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\" 1\",\"pages\":\" 102-108\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc04409f\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc04409f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Metal-free catalytic nucleophilic substitution of primary alcohols with secondary phosphine oxides†
Due to their inert nature and low reactivities, the dehydrative version of the MA reaction has not been achieved under metal-free conditions. Here, we develop a direct and efficient metal-free nucleophilic substitution reaction of primary alcohols with secondary phosphine oxides using trimethyliodosilane (TMSI) as the catalyst, providing a simple and green method for synthesis of useful tertiary phosphine oxides. This method is very effective as it can be extended to various primary alcohols, including benzylic and allylic, and even the more inert primary aliphatic alcohols. Many products can be obtained with high purity by simple washing and/or recrystallization under column chromatography-free conditions. This method can also be scaled up easily and applied in one-pot step-wise transformations to synthesize useful chemicals. Mechanism studies suggested that the reaction can be considered as a dehydrative version of the Michaelis–Arbuzov reaction and that both alcohol dehydroxylation and dehydrogenation processes may be involved in the reaction.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.