叠氮化物与烯氨酮合成 1,2,3- 三唑的无金属 [3+2] 环加成反应的计算研究†。

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mohammad Abd Al-Hakim Badawi, Maram Dagher, Abdullah Yahya Abdullah Alzahrani, Ali A. Khairbek and Renjith Thomas
{"title":"叠氮化物与烯氨酮合成 1,2,3- 三唑的无金属 [3+2] 环加成反应的计算研究†。","authors":"Mohammad Abd Al-Hakim Badawi, Maram Dagher, Abdullah Yahya Abdullah Alzahrani, Ali A. Khairbek and Renjith Thomas","doi":"10.1039/D4NJ04341C","DOIUrl":null,"url":null,"abstract":"<p >In this study, we investigated the mechanism of [3+2] cycloaddition (32CA) reaction between phenyl azide and phenyl enaminone using the M06-2X/6-31+G(d,p) level of theory for the first time. Computational results indicate that the metal-free azide-enaminone 32CA reaction for the selective synthesis of 1,2,3-triazoles in toluene proceeds along the 1,4- and 1,5-pathway, with the corresponding activation free energies (Δ<em>G</em>) of about 30.3 and 39.5 kcal mol<small><sup>−1</sup></small>, respectively, corresponding to the 32CA step. The alternative mechanism for this reaction in the presence of a catalyst and water as the solvent is proposed. The solvents studied displayed similar effects on activation energies (<em>E</em><small><sup>#</sup></small>) and Δ<em>G</em>. The results of our computational study on the effect of phenyl azide substituents are consistent with the experimental observations in terms of reaction yield. The global and local nucleophilic and electrophilic indices of reagents and non-covalent interactions (NCI) are analyzed to determine the selectivity of the reaction and elucidate the most stable transition state structures.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 1","pages":" 291-301"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational studies of the metal-free [3+2] cycloaddition reaction of azide with enaminone for the synthesis of 1,2,3-triazoles†\",\"authors\":\"Mohammad Abd Al-Hakim Badawi, Maram Dagher, Abdullah Yahya Abdullah Alzahrani, Ali A. Khairbek and Renjith Thomas\",\"doi\":\"10.1039/D4NJ04341C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, we investigated the mechanism of [3+2] cycloaddition (32CA) reaction between phenyl azide and phenyl enaminone using the M06-2X/6-31+G(d,p) level of theory for the first time. Computational results indicate that the metal-free azide-enaminone 32CA reaction for the selective synthesis of 1,2,3-triazoles in toluene proceeds along the 1,4- and 1,5-pathway, with the corresponding activation free energies (Δ<em>G</em>) of about 30.3 and 39.5 kcal mol<small><sup>−1</sup></small>, respectively, corresponding to the 32CA step. The alternative mechanism for this reaction in the presence of a catalyst and water as the solvent is proposed. The solvents studied displayed similar effects on activation energies (<em>E</em><small><sup>#</sup></small>) and Δ<em>G</em>. The results of our computational study on the effect of phenyl azide substituents are consistent with the experimental observations in terms of reaction yield. The global and local nucleophilic and electrophilic indices of reagents and non-covalent interactions (NCI) are analyzed to determine the selectivity of the reaction and elucidate the most stable transition state structures.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 1\",\"pages\":\" 291-301\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj04341c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj04341c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational studies of the metal-free [3+2] cycloaddition reaction of azide with enaminone for the synthesis of 1,2,3-triazoles†

Computational studies of the metal-free [3+2] cycloaddition reaction of azide with enaminone for the synthesis of 1,2,3-triazoles†

In this study, we investigated the mechanism of [3+2] cycloaddition (32CA) reaction between phenyl azide and phenyl enaminone using the M06-2X/6-31+G(d,p) level of theory for the first time. Computational results indicate that the metal-free azide-enaminone 32CA reaction for the selective synthesis of 1,2,3-triazoles in toluene proceeds along the 1,4- and 1,5-pathway, with the corresponding activation free energies (ΔG) of about 30.3 and 39.5 kcal mol−1, respectively, corresponding to the 32CA step. The alternative mechanism for this reaction in the presence of a catalyst and water as the solvent is proposed. The solvents studied displayed similar effects on activation energies (E#) and ΔG. The results of our computational study on the effect of phenyl azide substituents are consistent with the experimental observations in terms of reaction yield. The global and local nucleophilic and electrophilic indices of reagents and non-covalent interactions (NCI) are analyzed to determine the selectivity of the reaction and elucidate the most stable transition state structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信