激光辐照诱导的硫酸盐双光子光解用于光致发光硫量子点†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuxian Wei, Hao Huang, Ningning He, Taiping Hu, Jijun Huang, Yunyu Cai, Yixing Ye, Pengfei Li, Xueling Lei and Changhao Liang
{"title":"激光辐照诱导的硫酸盐双光子光解用于光致发光硫量子点†","authors":"Shuxian Wei, Hao Huang, Ningning He, Taiping Hu, Jijun Huang, Yunyu Cai, Yixing Ye, Pengfei Li, Xueling Lei and Changhao Liang","doi":"10.1039/D4QM00733F","DOIUrl":null,"url":null,"abstract":"<p >Recently, sulfur quantum dots (SQDs) have gained great research interest because of their excellent optical properties and low toxicity, thus inspiring researchers to make efforts to explore a simpler and faster approach for the synthesis of SQDs. Herein, a facile and green bottom-up strategy is first proposed to prepare SQDs <em>via</em> 532 nm laser irradiation of a sulfate-containing solution without any extra additives. The reduction of sulfates to elemental sulfur under visible light is demonstrated for the first time. Furthermore, fluorescence characterization combined with density functional theory calculations revealed that the two-photon dissociation of sulfates plays a critical role in the formation of SQDs under laser irradiation. The nucleation mechanisms of self-assembling of sulfur element were revealed by molecular dynamics.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 45-54"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser irradiation-induced two-photon photolysis of sulfates for photoluminescent sulfur quantum dots†\",\"authors\":\"Shuxian Wei, Hao Huang, Ningning He, Taiping Hu, Jijun Huang, Yunyu Cai, Yixing Ye, Pengfei Li, Xueling Lei and Changhao Liang\",\"doi\":\"10.1039/D4QM00733F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Recently, sulfur quantum dots (SQDs) have gained great research interest because of their excellent optical properties and low toxicity, thus inspiring researchers to make efforts to explore a simpler and faster approach for the synthesis of SQDs. Herein, a facile and green bottom-up strategy is first proposed to prepare SQDs <em>via</em> 532 nm laser irradiation of a sulfate-containing solution without any extra additives. The reduction of sulfates to elemental sulfur under visible light is demonstrated for the first time. Furthermore, fluorescence characterization combined with density functional theory calculations revealed that the two-photon dissociation of sulfates plays a critical role in the formation of SQDs under laser irradiation. The nucleation mechanisms of self-assembling of sulfur element were revealed by molecular dynamics.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 1\",\"pages\":\" 45-54\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00733f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00733f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,硫量子点(SQDs)因其优异的光学性质和低毒性而引起了人们的极大兴趣,从而激发了人们努力探索更简单、更快速的方法来合成SQDs。本文首次提出了一种简单、绿色的自下而上的策略,通过532 nm激光照射含硫酸盐溶液,不添加任何额外的添加剂来制备sqd。首次证明了硫酸盐在可见光下还原为单质硫。此外,荧光表征结合密度泛函理论计算表明,在激光照射下,硫酸盐的双光子解离在SQDs的形成中起着关键作用。从分子动力学角度揭示了硫元素自组装的成核机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Laser irradiation-induced two-photon photolysis of sulfates for photoluminescent sulfur quantum dots†

Laser irradiation-induced two-photon photolysis of sulfates for photoluminescent sulfur quantum dots†

Recently, sulfur quantum dots (SQDs) have gained great research interest because of their excellent optical properties and low toxicity, thus inspiring researchers to make efforts to explore a simpler and faster approach for the synthesis of SQDs. Herein, a facile and green bottom-up strategy is first proposed to prepare SQDs via 532 nm laser irradiation of a sulfate-containing solution without any extra additives. The reduction of sulfates to elemental sulfur under visible light is demonstrated for the first time. Furthermore, fluorescence characterization combined with density functional theory calculations revealed that the two-photon dissociation of sulfates plays a critical role in the formation of SQDs under laser irradiation. The nucleation mechanisms of self-assembling of sulfur element were revealed by molecular dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信