通过异质结释放巨大负电热效应的力量

IF 17.1 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ziyue Ma , Feifei Han , Hao Wang , Yichi Wang , Laijun Liu , Xue Chen , Wen Dong , Yang Li , Yisong Bai , Dingyuan Wang , Limei Zheng , Qi Zhang , Biaolin Peng
{"title":"通过异质结释放巨大负电热效应的力量","authors":"Ziyue Ma ,&nbsp;Feifei Han ,&nbsp;Hao Wang ,&nbsp;Yichi Wang ,&nbsp;Laijun Liu ,&nbsp;Xue Chen ,&nbsp;Wen Dong ,&nbsp;Yang Li ,&nbsp;Yisong Bai ,&nbsp;Dingyuan Wang ,&nbsp;Limei Zheng ,&nbsp;Qi Zhang ,&nbsp;Biaolin Peng","doi":"10.1016/j.nanoen.2024.110578","DOIUrl":null,"url":null,"abstract":"<div><div>The compact, integrated solid-state refrigeration using the electrocaloric effect (EC) has gained wide interest in electronics, healthcare, and defense sectors for its low power consumption. Despite rising interest, existing electrocaloric refrigeration materials typically face challenges including low efficiency and complex heat transfer dynamics. Here, we present a novel approach to achieve high cooling efficiency within a single electric field cycle via positive-negative electrocaloric synergy effects. A high-performance conversion of positive EC effect (Δ<em>T</em><sub><em>max</em></sub> ∼ 7.54 K) to negative EC effect (Δ<em>T</em><sub><em>max</em></sub> ∼ −11.85 K) over a wide temperature range (303 ∼ 443 K) is exampled in sandwich heterojunction-thin-film structure of Ca<sub>0.2</sub>Zr<sub>0.8</sub>O<sub>1.8</sub>/85 %Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>-15 %PbTiO<sub>3</sub>/Ca<sub>0.2</sub>Zr<sub>0.8</sub>O<sub>1.8</sub>. This linear dielectric dead layer of Ca<sub>0.2</sub>Zr<sub>0.8</sub>O<sub>1.8</sub> aids in the polarization reversal of pinned domains at the interfaces and promotes the emergence of polar nanodomains within this dead layer, enabling the leveraging of positive and negative EC synergy effects in a single electric field cycle. Our study enriches the functionalities of heterostructure interface, offering a distinctive approach to realize high-performance chip level electrocaloric films.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"134 ","pages":"Article 110578"},"PeriodicalIF":17.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unleashing the power of giant negative electrocaloric effect through heterojunctions\",\"authors\":\"Ziyue Ma ,&nbsp;Feifei Han ,&nbsp;Hao Wang ,&nbsp;Yichi Wang ,&nbsp;Laijun Liu ,&nbsp;Xue Chen ,&nbsp;Wen Dong ,&nbsp;Yang Li ,&nbsp;Yisong Bai ,&nbsp;Dingyuan Wang ,&nbsp;Limei Zheng ,&nbsp;Qi Zhang ,&nbsp;Biaolin Peng\",\"doi\":\"10.1016/j.nanoen.2024.110578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The compact, integrated solid-state refrigeration using the electrocaloric effect (EC) has gained wide interest in electronics, healthcare, and defense sectors for its low power consumption. Despite rising interest, existing electrocaloric refrigeration materials typically face challenges including low efficiency and complex heat transfer dynamics. Here, we present a novel approach to achieve high cooling efficiency within a single electric field cycle via positive-negative electrocaloric synergy effects. A high-performance conversion of positive EC effect (Δ<em>T</em><sub><em>max</em></sub> ∼ 7.54 K) to negative EC effect (Δ<em>T</em><sub><em>max</em></sub> ∼ −11.85 K) over a wide temperature range (303 ∼ 443 K) is exampled in sandwich heterojunction-thin-film structure of Ca<sub>0.2</sub>Zr<sub>0.8</sub>O<sub>1.8</sub>/85 %Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub>-15 %PbTiO<sub>3</sub>/Ca<sub>0.2</sub>Zr<sub>0.8</sub>O<sub>1.8</sub>. This linear dielectric dead layer of Ca<sub>0.2</sub>Zr<sub>0.8</sub>O<sub>1.8</sub> aids in the polarization reversal of pinned domains at the interfaces and promotes the emergence of polar nanodomains within this dead layer, enabling the leveraging of positive and negative EC synergy effects in a single electric field cycle. Our study enriches the functionalities of heterostructure interface, offering a distinctive approach to realize high-performance chip level electrocaloric films.</div></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"134 \",\"pages\":\"Article 110578\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285524013302\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524013302","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用电热效应(EC)的紧凑,集成的固态制冷因其低功耗而在电子,医疗保健和国防部门获得了广泛的兴趣。尽管人们对电致制冷的兴趣日益浓厚,但现有的电致制冷材料通常面临着效率低和传热动力学复杂等挑战。在这里,我们提出了一种新的方法,通过正负的电热协同效应在单个电场循环中实现高冷却效率。在Ca0.2Zr0.8O1.8/85% pb (m101 / 3nb2 /3)O3-15%PbTiO3/Ca0.2Zr0.8O1.8的夹心异质结薄膜结构中,在宽温度范围(303 ~ 443 K)内实现了正EC效应(ΔTmax ~ 7.54 K)到负EC效应(ΔTmax ~ -11.85 K)的高效转换。Ca0.2Zr0.8O1.8的线性介电死层有助于界面处固定畴的极化反转,并促进死层内极性纳米畴的出现,从而在单个电场循环中利用正负EC协同效应。我们的研究丰富了异质结构界面的功能,为实现高性能芯片级电热膜提供了独特的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unleashing the power of giant negative electrocaloric effect through heterojunctions

Unleashing the power of giant negative electrocaloric effect through heterojunctions
The compact, integrated solid-state refrigeration using the electrocaloric effect (EC) has gained wide interest in electronics, healthcare, and defense sectors for its low power consumption. Despite rising interest, existing electrocaloric refrigeration materials typically face challenges including low efficiency and complex heat transfer dynamics. Here, we present a novel approach to achieve high cooling efficiency within a single electric field cycle via positive-negative electrocaloric synergy effects. A high-performance conversion of positive EC effect (ΔTmax ∼ 7.54 K) to negative EC effect (ΔTmax ∼ −11.85 K) over a wide temperature range (303 ∼ 443 K) is exampled in sandwich heterojunction-thin-film structure of Ca0.2Zr0.8O1.8/85 %Pb(Mg1/3Nb2/3)O3-15 %PbTiO3/Ca0.2Zr0.8O1.8. This linear dielectric dead layer of Ca0.2Zr0.8O1.8 aids in the polarization reversal of pinned domains at the interfaces and promotes the emergence of polar nanodomains within this dead layer, enabling the leveraging of positive and negative EC synergy effects in a single electric field cycle. Our study enriches the functionalities of heterostructure interface, offering a distinctive approach to realize high-performance chip level electrocaloric films.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信