{"title":"The plant signal peptide CLE7 induces plant defense response against viral infection in Nicotiana benthamiana","authors":"Peng Liu, Juan Zhang, Shuang Liu, Yaoyao Li, Chunyan Qi, Qitao Mo, Yaoyao Jiang, Haichao Hu, Tianye Zhang, Kaili Zhong, Jianqian Liu, Qiansheng Liao, Jianping Chen, Jian Yang","doi":"10.1016/j.devcel.2024.11.020","DOIUrl":null,"url":null,"abstract":"In plants, small peptides are important players in the plant stress response, yet their function in plant antiviral responses remains poorly understood. Here, we identify that the plant small peptide, CLAVATA3/ESR-RELATED 7 (CLE7), enhances plant resistance to Chinese wheat mosaic virus infection in <em>Nicotiana (N.) benthamiana</em>. Subsequent investigations demonstrate that CLE7 recognizes receptor kinase NbPXC3 to control the plant antiviral response. Moreover, CLE7-NbPXC3 signaling induces NbMKK2-controlled NbMPK4 phosphorylation, resulting in phosphorylation of the transcription factor NbEDT1. NbEDT1 phosphorylation is involved in the transcriptional activity of <em>NbNCED3</em>, which is a rate-limiting enzyme in abscisic acid (ABA) biosynthesis. Moreover, CLE7 activates broad-spectrum disease resistance to multiple RNA viral infections. Our study indicates that CLE7 induces a plant antiviral response through a series of immune signal transductions in <em>N. benthamiana</em> and provides a foundation for the exploration of efficient viral disease management methods based on plant small peptides.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"28 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.11.020","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The plant signal peptide CLE7 induces plant defense response against viral infection in Nicotiana benthamiana
In plants, small peptides are important players in the plant stress response, yet their function in plant antiviral responses remains poorly understood. Here, we identify that the plant small peptide, CLAVATA3/ESR-RELATED 7 (CLE7), enhances plant resistance to Chinese wheat mosaic virus infection in Nicotiana (N.) benthamiana. Subsequent investigations demonstrate that CLE7 recognizes receptor kinase NbPXC3 to control the plant antiviral response. Moreover, CLE7-NbPXC3 signaling induces NbMKK2-controlled NbMPK4 phosphorylation, resulting in phosphorylation of the transcription factor NbEDT1. NbEDT1 phosphorylation is involved in the transcriptional activity of NbNCED3, which is a rate-limiting enzyme in abscisic acid (ABA) biosynthesis. Moreover, CLE7 activates broad-spectrum disease resistance to multiple RNA viral infections. Our study indicates that CLE7 induces a plant antiviral response through a series of immune signal transductions in N. benthamiana and provides a foundation for the exploration of efficient viral disease management methods based on plant small peptides.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.