Friedrich J. Ehinger, Kirstin Scherlach, Felix Trottmann, Jonas Fiedler, Christian Hertweck
{"title":"基因组学驱动的抗增殖呋喃功能化多肽发现的捕获-释放策略","authors":"Friedrich J. Ehinger, Kirstin Scherlach, Felix Trottmann, Jonas Fiedler, Christian Hertweck","doi":"10.1002/anie.202421760","DOIUrl":null,"url":null,"abstract":"Abstract: Furan-functionalized peptides are of significant pharmacological interest due to their pronounced bioactivities and unique potential for orthogonal bioconjugation and derivatization. However, naturally occurring peptides with furyl side chains are exceedingly rare. This study presents a streamlined method to predict and assess the microbial production of peptides incorporating 3-furylalanine (Fua) moieties. The approach integrates genome mining and the reversible, chemoselective tagging of furyl residues, utilizing their unique Diels-Alder reactivity, for mass spectrometry-guided identification of candidate compounds. By employing the rhizonin Fua synthase as a bioinformatic handle and through heterologous reconstitution of Fua biosynthesis, we identified previously unknown Fua biosynthetic pathways in diverse bacterial phyla, including actinomycetes, cyanobacteria, actinobacteria, and g-proteobacteria, suggesting that Fua-containing peptides are remarkably widely distributed. Metabolic profiling by reversible tagging facilitated the detection of native Fua-containing metabolites. The successful adaptation of this method for solid support enabled the direct enrichment of furyl-substituted peptides from complex mixtures. This multi-pronged approach enabled the discovery and characterization of two novel families of Fua cyclopeptides (rubriamides and typhamides) with potent antiproliferative effects against human tumor cells and nematodes. The innovative catch-and-release strategy, in conjunction with genome mining, represents a valuable tool for the discovery of new furan-substituted natural products.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"253 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Catch-Release Strategy for the Genomics-Driven Discovery of Antiproliferative Furan-Functionalized Peptides\",\"authors\":\"Friedrich J. Ehinger, Kirstin Scherlach, Felix Trottmann, Jonas Fiedler, Christian Hertweck\",\"doi\":\"10.1002/anie.202421760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: Furan-functionalized peptides are of significant pharmacological interest due to their pronounced bioactivities and unique potential for orthogonal bioconjugation and derivatization. However, naturally occurring peptides with furyl side chains are exceedingly rare. This study presents a streamlined method to predict and assess the microbial production of peptides incorporating 3-furylalanine (Fua) moieties. The approach integrates genome mining and the reversible, chemoselective tagging of furyl residues, utilizing their unique Diels-Alder reactivity, for mass spectrometry-guided identification of candidate compounds. By employing the rhizonin Fua synthase as a bioinformatic handle and through heterologous reconstitution of Fua biosynthesis, we identified previously unknown Fua biosynthetic pathways in diverse bacterial phyla, including actinomycetes, cyanobacteria, actinobacteria, and g-proteobacteria, suggesting that Fua-containing peptides are remarkably widely distributed. Metabolic profiling by reversible tagging facilitated the detection of native Fua-containing metabolites. The successful adaptation of this method for solid support enabled the direct enrichment of furyl-substituted peptides from complex mixtures. This multi-pronged approach enabled the discovery and characterization of two novel families of Fua cyclopeptides (rubriamides and typhamides) with potent antiproliferative effects against human tumor cells and nematodes. The innovative catch-and-release strategy, in conjunction with genome mining, represents a valuable tool for the discovery of new furan-substituted natural products.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"253 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202421760\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421760","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Catch-Release Strategy for the Genomics-Driven Discovery of Antiproliferative Furan-Functionalized Peptides
Abstract: Furan-functionalized peptides are of significant pharmacological interest due to their pronounced bioactivities and unique potential for orthogonal bioconjugation and derivatization. However, naturally occurring peptides with furyl side chains are exceedingly rare. This study presents a streamlined method to predict and assess the microbial production of peptides incorporating 3-furylalanine (Fua) moieties. The approach integrates genome mining and the reversible, chemoselective tagging of furyl residues, utilizing their unique Diels-Alder reactivity, for mass spectrometry-guided identification of candidate compounds. By employing the rhizonin Fua synthase as a bioinformatic handle and through heterologous reconstitution of Fua biosynthesis, we identified previously unknown Fua biosynthetic pathways in diverse bacterial phyla, including actinomycetes, cyanobacteria, actinobacteria, and g-proteobacteria, suggesting that Fua-containing peptides are remarkably widely distributed. Metabolic profiling by reversible tagging facilitated the detection of native Fua-containing metabolites. The successful adaptation of this method for solid support enabled the direct enrichment of furyl-substituted peptides from complex mixtures. This multi-pronged approach enabled the discovery and characterization of two novel families of Fua cyclopeptides (rubriamides and typhamides) with potent antiproliferative effects against human tumor cells and nematodes. The innovative catch-and-release strategy, in conjunction with genome mining, represents a valuable tool for the discovery of new furan-substituted natural products.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.