温馨提示收益是否应解释为对数差值?

IF 7.5 1区 经济学 Q1 BUSINESS, FINANCE
David Iheke Okorie
{"title":"温馨提示收益是否应解释为对数差值?","authors":"David Iheke Okorie","doi":"10.1016/j.irfa.2024.103864","DOIUrl":null,"url":null,"abstract":"It is rather a norm for researchers to directly use the log difference of an asset price to compute returns. Just like using <mml:math altimg=\"si317.svg\"><mml:mo>ln</mml:mo><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:mi mathvariant=\"normal\">X</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mfenced></mml:math> to avoid taking the natural logarithm of zero(s). However, this log returns is but a conditional approximation of the actual returns. Nonetheless, can log difference approximations and the <mml:math altimg=\"si317.svg\"><mml:mo>ln</mml:mo><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:mi mathvariant=\"normal\">X</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mfenced></mml:math> common practices produce BLUE estimates? Using the log return as an example, this study discusses the approximation nature and conditions for using the log difference approximation both for the interest regressor and control variables. These conditions are; that both the sample average and variance of the original series tend to zero. When these conditions are not met, the log difference approximation is, in fact, not a good approximation and biases OLS causal estimators. When the conditions are met, it produces unbiased, consistent but less efficient estimators. Thereby making the estimates less precise and less accurate. Nonetheless, this is true for a log differenced interest regressor(s) and control variables, when it correlates with the interest variable(s) and explains, in part, the dependent variable, even in large samples. Similarly, the common use of <mml:math altimg=\"si317.svg\"><mml:mo>ln</mml:mo><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:mi mathvariant=\"normal\">X</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mfenced></mml:math> biases the estimation of the true causal effect, even the intercept term, except when <mml:math altimg=\"si901.svg\"><mml:mi>X</mml:mi></mml:math> tends to infinity. A robust solution of using non-zero subsamples, against <mml:math altimg=\"si317.svg\"><mml:mo>ln</mml:mo><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:mi mathvariant=\"normal\">X</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mfenced></mml:math>, produces unbiased and consistent estimators for the true causal effects under the causal assumptions. These biasedness, inconsistencies, and inefficiencies do not disappear in large samples. Finally, both ex-ante and ex-post test statistics are discussed, however, the ex-post estimation test statistic is recommended to confirm both the choice of using log difference approximation and that of using <mml:math altimg=\"si317.svg\"><mml:mo>ln</mml:mo><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:mi mathvariant=\"normal\">X</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mfenced></mml:math>, in an empirical data causal regression analysis. Ideally, researchers should ensure the conditions for using the log difference approximation are met. Otherwise, these approximations and practices produce biased, inconsistent, and inefficient results, even in large samples, leading to misinformed policy implications.","PeriodicalId":48226,"journal":{"name":"International Review of Financial Analysis","volume":"10 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A gentle reminder: Should returns be interpreted as log differences?\",\"authors\":\"David Iheke Okorie\",\"doi\":\"10.1016/j.irfa.2024.103864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is rather a norm for researchers to directly use the log difference of an asset price to compute returns. Just like using <mml:math altimg=\\\"si317.svg\\\"><mml:mo>ln</mml:mo><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">X</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mfenced></mml:math> to avoid taking the natural logarithm of zero(s). However, this log returns is but a conditional approximation of the actual returns. Nonetheless, can log difference approximations and the <mml:math altimg=\\\"si317.svg\\\"><mml:mo>ln</mml:mo><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">X</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mfenced></mml:math> common practices produce BLUE estimates? Using the log return as an example, this study discusses the approximation nature and conditions for using the log difference approximation both for the interest regressor and control variables. These conditions are; that both the sample average and variance of the original series tend to zero. When these conditions are not met, the log difference approximation is, in fact, not a good approximation and biases OLS causal estimators. When the conditions are met, it produces unbiased, consistent but less efficient estimators. Thereby making the estimates less precise and less accurate. Nonetheless, this is true for a log differenced interest regressor(s) and control variables, when it correlates with the interest variable(s) and explains, in part, the dependent variable, even in large samples. Similarly, the common use of <mml:math altimg=\\\"si317.svg\\\"><mml:mo>ln</mml:mo><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">X</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mfenced></mml:math> biases the estimation of the true causal effect, even the intercept term, except when <mml:math altimg=\\\"si901.svg\\\"><mml:mi>X</mml:mi></mml:math> tends to infinity. A robust solution of using non-zero subsamples, against <mml:math altimg=\\\"si317.svg\\\"><mml:mo>ln</mml:mo><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">X</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mfenced></mml:math>, produces unbiased and consistent estimators for the true causal effects under the causal assumptions. These biasedness, inconsistencies, and inefficiencies do not disappear in large samples. Finally, both ex-ante and ex-post test statistics are discussed, however, the ex-post estimation test statistic is recommended to confirm both the choice of using log difference approximation and that of using <mml:math altimg=\\\"si317.svg\\\"><mml:mo>ln</mml:mo><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:mrow><mml:mi mathvariant=\\\"normal\\\">X</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mfenced></mml:math>, in an empirical data causal regression analysis. Ideally, researchers should ensure the conditions for using the log difference approximation are met. Otherwise, these approximations and practices produce biased, inconsistent, and inefficient results, even in large samples, leading to misinformed policy implications.\",\"PeriodicalId\":48226,\"journal\":{\"name\":\"International Review of Financial Analysis\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Financial Analysis\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1016/j.irfa.2024.103864\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Financial Analysis","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1016/j.irfa.2024.103864","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

对于研究人员来说,直接使用资产价格的对数差来计算回报率是一种常态。就像使用 lnX+1 来避免取零的自然对数一样。然而,这种对数收益率只是实际收益率的条件近似值。然而,对数差分近似和 lnX+1 的常用做法能否产生 BLUE 估计值呢?本研究以对数收益率为例,讨论了利息回归变量和控制变量的近似性质以及使用对数差分近似的条件。这些条件是:原始序列的样本平均数和方差都趋于零。如果不满足这些条件,对数差分近似实际上并不是一个好的近似方法,而且会使 OLS 因果估计值产生偏差。当这些条件得到满足时,它可以得到无偏、一致但效率较低的估计值。因此,估计的精确度和准确性都会降低。尽管如此,对于对数差分利息回归变量和控制变量来说,当它与利息变量相关并部分解释因变量时,即使在大样本中也是如此。同样,常用的 lnX+1 也会使对真实因果效应的估计出现偏差,甚至是截距项,除非 X 趋于无穷大。针对 lnX+1 使用非零子样本的稳健解决方案,可以在因果假设下产生无偏且一致的真实因果效应估计值。这些偏差、不一致性和低效率在大样本中并没有消失。最后,我们讨论了事前和事后检验统计量,但建议使用事后估计检验统计量来确认在经验数据因果回归分析中使用对数差近似和使用 lnX+1 的选择。理想情况下,研究人员应确保满足使用对数差分近似的条件。否则,即使在大样本中,这些近似方法和做法也会产生有偏差、不一致和低效率的结果,从而导致错误的政策影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A gentle reminder: Should returns be interpreted as log differences?
It is rather a norm for researchers to directly use the log difference of an asset price to compute returns. Just like using lnX+1 to avoid taking the natural logarithm of zero(s). However, this log returns is but a conditional approximation of the actual returns. Nonetheless, can log difference approximations and the lnX+1 common practices produce BLUE estimates? Using the log return as an example, this study discusses the approximation nature and conditions for using the log difference approximation both for the interest regressor and control variables. These conditions are; that both the sample average and variance of the original series tend to zero. When these conditions are not met, the log difference approximation is, in fact, not a good approximation and biases OLS causal estimators. When the conditions are met, it produces unbiased, consistent but less efficient estimators. Thereby making the estimates less precise and less accurate. Nonetheless, this is true for a log differenced interest regressor(s) and control variables, when it correlates with the interest variable(s) and explains, in part, the dependent variable, even in large samples. Similarly, the common use of lnX+1 biases the estimation of the true causal effect, even the intercept term, except when X tends to infinity. A robust solution of using non-zero subsamples, against lnX+1, produces unbiased and consistent estimators for the true causal effects under the causal assumptions. These biasedness, inconsistencies, and inefficiencies do not disappear in large samples. Finally, both ex-ante and ex-post test statistics are discussed, however, the ex-post estimation test statistic is recommended to confirm both the choice of using log difference approximation and that of using lnX+1, in an empirical data causal regression analysis. Ideally, researchers should ensure the conditions for using the log difference approximation are met. Otherwise, these approximations and practices produce biased, inconsistent, and inefficient results, even in large samples, leading to misinformed policy implications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
9.80%
发文量
366
期刊介绍: The International Review of Financial Analysis (IRFA) is an impartial refereed journal designed to serve as a platform for high-quality financial research. It welcomes a diverse range of financial research topics and maintains an unbiased selection process. While not limited to U.S.-centric subjects, IRFA, as its title suggests, is open to valuable research contributions from around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信