Yining Ma, Jiawei Ren, Shaozhong Kang, Jun Niu, Ling Tong
{"title":"中国西北地区气象和农业干旱的时空动态:传播、驱动因素和预测","authors":"Yining Ma, Jiawei Ren, Shaozhong Kang, Jun Niu, Ling Tong","doi":"10.1016/j.jhydrol.2024.132492","DOIUrl":null,"url":null,"abstract":"Conventional drought studies have predominantly focused on elucidating the temporal-spatial evolution of drought while neglecting research on drought propagation. Various degrees of correspondence exist within the same drought propagation mode. This study utilized the Standardized Precipitation Evapotranspiration Index (SPEI) and Vegetation Condition Index (VCI) to characterize meteorological drought (MD) and agricultural drought (AD). The temporal-spatial characteristics of drought in Northwest China (NWC) from 1982 to 2020 were examined. Subsequently, the interaction between AD and MD was investigated, encompassing correlation, time-lag, propagation characteristics, and primary modes of propagation. Then, the impacts of climate change (CC) and human activities (HA) on AD were individually assessed and quantified. Finally, the probability and return period of drought propagation in different degrees were predicted. The findings reveal that: (1) MD exhibited short duration, high frequency, and low severity, whereas AD was less frequent but endured longer and caused greater harm. In recent 40 years, MD has shown a decrease, while AD has worsened. (2) AD typically lagged behind MD by 1–3 months, with about 33.72 % of regions experiencing a time-lag of approximately 1 month. Generally, AD displayed a positive correlation with MD, although the adverse impact of MD on AD has lessened in the last decade. (3) The primary mode of drought propagation in NWC was “one-to-one,” while in Ningxia, Gansu, and southern Xinjiang, it was “multiple-to-one.” (4) The sensitivity of AD to different climatic environmental factors exhibited noteworthy geographical variations, with SPEI, soil moisture, and maximum temperature exerting a more substantial impact on AD. CC predominantly had a positive contribution with AD, whereas HA exhibited a negative contribution in 54.24 % of the regions. (5) Future MD was projected to mainly consist of light drought, with AD dominated by no, light, and severe drought. AD was more serious in Qinghai, Ningxia and northern Xinjiang. Different degree of MD can easily lead to the same degree or more severe AD. Analyses of the return period of drought revealed that severe AD may have a greater adverse impact on the agricultural development of NWC in the future.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"43 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial-temporal dynamics of meteorological and agricultural drought in Northwest China: Propagation, drivers and prediction\",\"authors\":\"Yining Ma, Jiawei Ren, Shaozhong Kang, Jun Niu, Ling Tong\",\"doi\":\"10.1016/j.jhydrol.2024.132492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional drought studies have predominantly focused on elucidating the temporal-spatial evolution of drought while neglecting research on drought propagation. Various degrees of correspondence exist within the same drought propagation mode. This study utilized the Standardized Precipitation Evapotranspiration Index (SPEI) and Vegetation Condition Index (VCI) to characterize meteorological drought (MD) and agricultural drought (AD). The temporal-spatial characteristics of drought in Northwest China (NWC) from 1982 to 2020 were examined. Subsequently, the interaction between AD and MD was investigated, encompassing correlation, time-lag, propagation characteristics, and primary modes of propagation. Then, the impacts of climate change (CC) and human activities (HA) on AD were individually assessed and quantified. Finally, the probability and return period of drought propagation in different degrees were predicted. The findings reveal that: (1) MD exhibited short duration, high frequency, and low severity, whereas AD was less frequent but endured longer and caused greater harm. In recent 40 years, MD has shown a decrease, while AD has worsened. (2) AD typically lagged behind MD by 1–3 months, with about 33.72 % of regions experiencing a time-lag of approximately 1 month. Generally, AD displayed a positive correlation with MD, although the adverse impact of MD on AD has lessened in the last decade. (3) The primary mode of drought propagation in NWC was “one-to-one,” while in Ningxia, Gansu, and southern Xinjiang, it was “multiple-to-one.” (4) The sensitivity of AD to different climatic environmental factors exhibited noteworthy geographical variations, with SPEI, soil moisture, and maximum temperature exerting a more substantial impact on AD. CC predominantly had a positive contribution with AD, whereas HA exhibited a negative contribution in 54.24 % of the regions. (5) Future MD was projected to mainly consist of light drought, with AD dominated by no, light, and severe drought. AD was more serious in Qinghai, Ningxia and northern Xinjiang. Different degree of MD can easily lead to the same degree or more severe AD. Analyses of the return period of drought revealed that severe AD may have a greater adverse impact on the agricultural development of NWC in the future.\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhydrol.2024.132492\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2024.132492","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
摘要
传统的干旱研究主要侧重于阐明干旱的时空演变,而忽视了对干旱传播的研究。在同一种干旱传播模式下,存在不同程度的对应关系。本研究利用标准化降水蒸散指数(SPEI)和植被状况指数(VCI)来描述气象干旱(MD)和农业干旱(AD)的特征。研究了中国西北地区(NWC)1982-2020 年干旱的时空特征。随后,研究了 AD 和 MD 之间的相互作用,包括相关性、时滞、传播特征和主要传播模式。然后,分别评估和量化了气候变化(CC)和人类活动(HA)对 AD 的影响。最后,预测了不同程度干旱传播的概率和回归期。研究结果表明(1) MD 表现为持续时间短、频率高、严重程度低,而 AD 频率较低,但持续时间较长,造成的危害较大。近 40 年来,MD 呈下降趋势,而 AD 呈恶化趋势。(2) 急性心肌梗死通常比急性心肌梗死滞后 1-3 个月,约 33.72% 的地区滞后约 1 个月。一般情况下,旱情与墒情呈正相关,但近十年来墒情对旱情的不利影响有所减弱。(3) 干旱在西北干旱区的主要传播方式是 "一对一",而在宁夏、甘肃和新疆南部则是 "多对一"。(4) 干旱对不同气候环境因子的敏感性表现出显著的地域差异,SPEI、土壤水分和最高气温对干旱的影响更大。在 54.24% 的地区,CC 对平均日产量的影响主要为正,而 HA 对平均日产量的影响为负。(5) 预计未来MD以轻旱为主,AD以无旱、轻旱和重旱为主。青海、宁夏和新疆北部的 AD 更为严重。不同程度的 MD 很容易导致相同程度或更严重的 AD。对干旱重现期的分析表明,严重干旱对未来西北干旱带农业发展的不利影响可能更大。
Spatial-temporal dynamics of meteorological and agricultural drought in Northwest China: Propagation, drivers and prediction
Conventional drought studies have predominantly focused on elucidating the temporal-spatial evolution of drought while neglecting research on drought propagation. Various degrees of correspondence exist within the same drought propagation mode. This study utilized the Standardized Precipitation Evapotranspiration Index (SPEI) and Vegetation Condition Index (VCI) to characterize meteorological drought (MD) and agricultural drought (AD). The temporal-spatial characteristics of drought in Northwest China (NWC) from 1982 to 2020 were examined. Subsequently, the interaction between AD and MD was investigated, encompassing correlation, time-lag, propagation characteristics, and primary modes of propagation. Then, the impacts of climate change (CC) and human activities (HA) on AD were individually assessed and quantified. Finally, the probability and return period of drought propagation in different degrees were predicted. The findings reveal that: (1) MD exhibited short duration, high frequency, and low severity, whereas AD was less frequent but endured longer and caused greater harm. In recent 40 years, MD has shown a decrease, while AD has worsened. (2) AD typically lagged behind MD by 1–3 months, with about 33.72 % of regions experiencing a time-lag of approximately 1 month. Generally, AD displayed a positive correlation with MD, although the adverse impact of MD on AD has lessened in the last decade. (3) The primary mode of drought propagation in NWC was “one-to-one,” while in Ningxia, Gansu, and southern Xinjiang, it was “multiple-to-one.” (4) The sensitivity of AD to different climatic environmental factors exhibited noteworthy geographical variations, with SPEI, soil moisture, and maximum temperature exerting a more substantial impact on AD. CC predominantly had a positive contribution with AD, whereas HA exhibited a negative contribution in 54.24 % of the regions. (5) Future MD was projected to mainly consist of light drought, with AD dominated by no, light, and severe drought. AD was more serious in Qinghai, Ningxia and northern Xinjiang. Different degree of MD can easily lead to the same degree or more severe AD. Analyses of the return period of drought revealed that severe AD may have a greater adverse impact on the agricultural development of NWC in the future.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.