M. Girons Lopez, T. Bosshard, L. Crochemore, I.G. Pechlivanidis
{"title":"Leveraging GCM-based forecasts for enhanced seasonal streamflow prediction in diverse hydrological regimes","authors":"M. Girons Lopez, T. Bosshard, L. Crochemore, I.G. Pechlivanidis","doi":"10.1016/j.jhydrol.2024.132504","DOIUrl":null,"url":null,"abstract":"Seasonal hydrological forecasts are vital for managing water resources and adapting to climate change, aiding in diverse planning and decision-making processes. Currently it is unknown how different forecasting methods, considering initial hydrological conditions and dynamic meteorological forcing, perform across the Swedish river systems, despite the significant socio-economic implications. Here we explore the drivers that mostly impact streamflow predictions and attribute the added quality of these predictions to local hydrological regimes. We compare the accuracy of seasonal streamflow forecasts driven by dynamic GCM-based meteorological forecasts with those generated by the Ensemble Streamflow Prediction (ESP) method. The analysis spans across about 39,500 sub-catchments in Sweden encompassing various climatic, geographical and human-influenced factors. Results show that the streamflow predictability varies in space due to the country’s diverse hydrological regimes. Regardless of the regime, updating the models to achieve the best possible initial conditions is crucial for enhancing forecast skill across all seasons for up to 4 months. GCM-based meteorological forcing notably improves short-term streamflow accuracy, showing significant impact particularly up to 4–8 weeks lead time depending on the local hydrological regime. In the snow-driven northern regions, ESP demonstrates superior performance over GCM-based streamflow forecasts in winter. Conversely, in the southern regions, where conditions are predominantly influenced by rainfall, GCM-based forecasts show higher performance up to 4–6 weeks ahead, regardless of the season. In river systems with high human influences, streamflow climatology outperforms ESP and GCM-based forecasts underscoring the challenges of accurately modelling artificial reservoir management and the need for better access to management data. These insights guide the development of an advanced national seasonal hydrological forecasting service, and highlight the need for region-specific forecasting strategies indicating areas where predictability is enhanced by improved monitoring, hence initial conditions, and/or meteorological forcings. Finally, we discuss the applicability of these forecasting methods to other regions worldwide, thereby placing our new insights within a global context.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"63 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2024.132504","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Leveraging GCM-based forecasts for enhanced seasonal streamflow prediction in diverse hydrological regimes
Seasonal hydrological forecasts are vital for managing water resources and adapting to climate change, aiding in diverse planning and decision-making processes. Currently it is unknown how different forecasting methods, considering initial hydrological conditions and dynamic meteorological forcing, perform across the Swedish river systems, despite the significant socio-economic implications. Here we explore the drivers that mostly impact streamflow predictions and attribute the added quality of these predictions to local hydrological regimes. We compare the accuracy of seasonal streamflow forecasts driven by dynamic GCM-based meteorological forecasts with those generated by the Ensemble Streamflow Prediction (ESP) method. The analysis spans across about 39,500 sub-catchments in Sweden encompassing various climatic, geographical and human-influenced factors. Results show that the streamflow predictability varies in space due to the country’s diverse hydrological regimes. Regardless of the regime, updating the models to achieve the best possible initial conditions is crucial for enhancing forecast skill across all seasons for up to 4 months. GCM-based meteorological forcing notably improves short-term streamflow accuracy, showing significant impact particularly up to 4–8 weeks lead time depending on the local hydrological regime. In the snow-driven northern regions, ESP demonstrates superior performance over GCM-based streamflow forecasts in winter. Conversely, in the southern regions, where conditions are predominantly influenced by rainfall, GCM-based forecasts show higher performance up to 4–6 weeks ahead, regardless of the season. In river systems with high human influences, streamflow climatology outperforms ESP and GCM-based forecasts underscoring the challenges of accurately modelling artificial reservoir management and the need for better access to management data. These insights guide the development of an advanced national seasonal hydrological forecasting service, and highlight the need for region-specific forecasting strategies indicating areas where predictability is enhanced by improved monitoring, hence initial conditions, and/or meteorological forcings. Finally, we discuss the applicability of these forecasting methods to other regions worldwide, thereby placing our new insights within a global context.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.