平衡大规模土地利用变化模拟中 CA 模型的模拟性能和计算强度

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhewei Liang , Xun Liang , Xintong Jiang , Tingyu Li , Qingfeng Guan
{"title":"平衡大规模土地利用变化模拟中 CA 模型的模拟性能和计算强度","authors":"Zhewei Liang ,&nbsp;Xun Liang ,&nbsp;Xintong Jiang ,&nbsp;Tingyu Li ,&nbsp;Qingfeng Guan","doi":"10.1016/j.envsoft.2024.106293","DOIUrl":null,"url":null,"abstract":"<div><div>Large-scale land-use change simulations are crucial for understanding land dynamics, investigating climate change, and shaping policy regulations. However, conducting fine-resolution land-use change simulations on a large scale is challenging due to high computational demands. Conversely, land-use change simulations with coarse-resolution data distort spatial details, thereby reducing simulation performance. Parallel computing can reduce computational demands but requires significant computational resources. Mixed-cell CA models offer a solution to balance simulation performance and computational intensity. The comparison experiments using various resolution land use datasets demonstrate that mixed-cell CA models, even those with coarse-resolution data, achieve results comparable to those of pure-cell CA models using fine-resolution data, but with significantly reduced simulation time. This highlights the efficiency of mixed-cell CA models in achieving comparable performance with lower computational intensity. Additionally, this study provides a measurement method for the uncertainty of mixed-cell CA models. In summary, this study reveals the unique advantages of mixed-cell CA models in efficient large-scale land use simulations, thereby providing valuable insights and guidance for future land use management and policy decisions.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"185 ","pages":"Article 106293"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing simulation performance and computational intensity of CA models for large-scale land-use change simulations\",\"authors\":\"Zhewei Liang ,&nbsp;Xun Liang ,&nbsp;Xintong Jiang ,&nbsp;Tingyu Li ,&nbsp;Qingfeng Guan\",\"doi\":\"10.1016/j.envsoft.2024.106293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large-scale land-use change simulations are crucial for understanding land dynamics, investigating climate change, and shaping policy regulations. However, conducting fine-resolution land-use change simulations on a large scale is challenging due to high computational demands. Conversely, land-use change simulations with coarse-resolution data distort spatial details, thereby reducing simulation performance. Parallel computing can reduce computational demands but requires significant computational resources. Mixed-cell CA models offer a solution to balance simulation performance and computational intensity. The comparison experiments using various resolution land use datasets demonstrate that mixed-cell CA models, even those with coarse-resolution data, achieve results comparable to those of pure-cell CA models using fine-resolution data, but with significantly reduced simulation time. This highlights the efficiency of mixed-cell CA models in achieving comparable performance with lower computational intensity. Additionally, this study provides a measurement method for the uncertainty of mixed-cell CA models. In summary, this study reveals the unique advantages of mixed-cell CA models in efficient large-scale land use simulations, thereby providing valuable insights and guidance for future land use management and policy decisions.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"185 \",\"pages\":\"Article 106293\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224003542\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224003542","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

大规模土地利用变化模拟对于理解土地动态、调查气候变化和制定政策法规至关重要。然而,由于高计算需求,在大尺度上进行高分辨率土地利用变化模拟具有挑战性。相反,使用粗分辨率数据的土地利用变化模拟会扭曲空间细节,从而降低模拟性能。并行计算可以减少计算需求,但需要大量的计算资源。混合单元CA模型提供了平衡仿真性能和计算强度的解决方案。使用不同分辨率土地利用数据集的对比实验表明,混合元胞CA模型,即使是使用粗分辨率数据的混合元胞CA模型,也可以获得与使用精细分辨率数据的纯元胞CA模型相当的结果,但可以显著缩短模拟时间。这突出了混合单元CA模型在较低计算强度下实现相当性能的效率。此外,本研究还提供了一种混合单元CA模型不确定度的测量方法。综上所述,本研究揭示了混合单元CA模型在高效大规模土地利用模拟中的独特优势,从而为未来的土地利用管理和政策决策提供了有价值的见解和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Balancing simulation performance and computational intensity of CA models for large-scale land-use change simulations
Large-scale land-use change simulations are crucial for understanding land dynamics, investigating climate change, and shaping policy regulations. However, conducting fine-resolution land-use change simulations on a large scale is challenging due to high computational demands. Conversely, land-use change simulations with coarse-resolution data distort spatial details, thereby reducing simulation performance. Parallel computing can reduce computational demands but requires significant computational resources. Mixed-cell CA models offer a solution to balance simulation performance and computational intensity. The comparison experiments using various resolution land use datasets demonstrate that mixed-cell CA models, even those with coarse-resolution data, achieve results comparable to those of pure-cell CA models using fine-resolution data, but with significantly reduced simulation time. This highlights the efficiency of mixed-cell CA models in achieving comparable performance with lower computational intensity. Additionally, this study provides a measurement method for the uncertainty of mixed-cell CA models. In summary, this study reveals the unique advantages of mixed-cell CA models in efficient large-scale land use simulations, thereby providing valuable insights and guidance for future land use management and policy decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信