{"title":"火灾动态视觉:多尺度火灾和烟羽行为的图像分割与跟踪","authors":"Daryn Sagel, Bryan Quaife","doi":"10.1016/j.envsoft.2024.106286","DOIUrl":null,"url":null,"abstract":"The increasing frequency and severity of wildfires highlight the need for accurate fire and plume spread models. We introduce an approach that effectively isolates and tracks fire and plume behavior across various spatial and temporal scales and image types, identifying physical phenomena in the system and providing insights useful for developing and validating models. Our method combines image segmentation and graph theory to delineate fire fronts and plume boundaries. We demonstrate that the method effectively distinguishes fires and plumes from visually similar objects. Results demonstrate the successful isolation and tracking of fire and plume dynamics across various image sources, ranging from synoptic-scale (<mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>–<mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mn>5</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> m) satellite images to sub-microscale (<mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>–<mml:math altimg=\"si4.svg\" display=\"inline\"><mml:mrow><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> m) images captured close to the fire environment. Furthermore, the methodology leverages image inpainting and spatio-temporal dataset generation for use in statistical and machine learning models.","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"200 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fire dynamic vision: Image segmentation and tracking for multi-scale fire and plume behavior\",\"authors\":\"Daryn Sagel, Bryan Quaife\",\"doi\":\"10.1016/j.envsoft.2024.106286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing frequency and severity of wildfires highlight the need for accurate fire and plume spread models. We introduce an approach that effectively isolates and tracks fire and plume behavior across various spatial and temporal scales and image types, identifying physical phenomena in the system and providing insights useful for developing and validating models. Our method combines image segmentation and graph theory to delineate fire fronts and plume boundaries. We demonstrate that the method effectively distinguishes fires and plumes from visually similar objects. Results demonstrate the successful isolation and tracking of fire and plume dynamics across various image sources, ranging from synoptic-scale (<mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>–<mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mn>5</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> m) satellite images to sub-microscale (<mml:math altimg=\\\"si3.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>–<mml:math altimg=\\\"si4.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> m) images captured close to the fire environment. Furthermore, the methodology leverages image inpainting and spatio-temporal dataset generation for use in statistical and machine learning models.\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"200 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.envsoft.2024.106286\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envsoft.2024.106286","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Fire dynamic vision: Image segmentation and tracking for multi-scale fire and plume behavior
The increasing frequency and severity of wildfires highlight the need for accurate fire and plume spread models. We introduce an approach that effectively isolates and tracks fire and plume behavior across various spatial and temporal scales and image types, identifying physical phenomena in the system and providing insights useful for developing and validating models. Our method combines image segmentation and graph theory to delineate fire fronts and plume boundaries. We demonstrate that the method effectively distinguishes fires and plumes from visually similar objects. Results demonstrate the successful isolation and tracking of fire and plume dynamics across various image sources, ranging from synoptic-scale (104–105 m) satellite images to sub-microscale (100–101 m) images captured close to the fire environment. Furthermore, the methodology leverages image inpainting and spatio-temporal dataset generation for use in statistical and machine learning models.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.